These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. Chen G, Pan T, Gao D, Liao H, Wang J. Sci Total Environ; 2024 Dec 10; 955():176870. PubMed ID: 39414046 [Abstract] [Full Text] [Related]
4. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. Verdú I, Amariei G, Plaza-Bolaños P, Agüera A, Leganés F, Rosal R, Fernández-Piñas F. Sci Total Environ; 2022 May 01; 819():153063. PubMed ID: 35031361 [Abstract] [Full Text] [Related]
6. Effects of polystyrene nanoplastics and PCB-44 exposure on growth and physiological biochemistry of Chlorella vulgaris. Zheng Q, Wu H, Yan L, Zhang Y, Wang J. Sci Total Environ; 2024 Mar 25; 918():170366. PubMed ID: 38280605 [Abstract] [Full Text] [Related]
9. Exposure to polystyrene nanoplastics and PCB77 induced oxidative stress, histopathological damage and intestinal microbiota disruption in white hard clam Meretrix lyrata. Kong C, Pan T, Chen X, Junaid M, Liao H, Gao D, Wang Q, Liu W, Wang X, Wang J. Sci Total Environ; 2023 Dec 20; 905():167125. PubMed ID: 37722427 [Abstract] [Full Text] [Related]
11. Effect of luminescent materials on the biochemistry, ultrastructure, and rhizobial microbiota of Spirodela polyrhiza. Li Q, Lan Y, Yang Y, Kang S, Wang X, Jiang J, Liu S, Wang Q, Zhang W, Zhang L. Plant Physiol Biochem; 2024 Feb 20; 207():108427. PubMed ID: 38367389 [Abstract] [Full Text] [Related]
13. Response of Spirodela polyrhiza to cerium: subcellular distribution, growth and biochemical changes. Xu Q, Jiang Y, Chu W, Su C, Hu D, Lu Q, Zhang T. Ecotoxicol Environ Saf; 2017 May 20; 139():56-64. PubMed ID: 28110046 [Abstract] [Full Text] [Related]
14. Enhanced neurotoxic effect of PCB-153 when co-exposed with polystyrene nanoplastics in zebrafish larvae. Varshney S, Hegstad-Pettersen MM, Siriyappagouder P, Olsvik PA. Chemosphere; 2024 May 20; 355():141783. PubMed ID: 38554869 [Abstract] [Full Text] [Related]
15. Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives. Surgun-Acar Y. Environ Pollut; 2022 Dec 01; 314():120262. PubMed ID: 36162560 [Abstract] [Full Text] [Related]
16. Phytotoxicity of microplastics to the floating plant Spirodela polyrhiza (L.): Plant functional traits and metabolomics. Wang Y, Bai J, Wen L, Wang W, Zhang L, Liu Z, Liu H. Environ Pollut; 2023 Apr 01; 322():121199. PubMed ID: 36738884 [Abstract] [Full Text] [Related]
17. Effects of polystyrene nanoplastics on the physiological and biochemical characteristics of microalga Scenedesmusquadricauda. Li RR, Wang BL, Nan FR, Lv JP, Liu XD, Liu Q, Feng J, Xie SL. Environ Pollut; 2023 Feb 15; 319():120987. PubMed ID: 36592883 [Abstract] [Full Text] [Related]
20. Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Hu C, Liu Y, Li X, Li M. Arch Environ Contam Toxicol; 2013 May 15; 64(4):643-51. PubMed ID: 23271345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]