These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 37631431
21. Boosting the Ion Mobility in Solid Polymer Electrolytes Using Hollow Polymer Nanospheres as an Additive. Li Y, Qin Y, Zhao J, Ma M, Zhang M, Li P, Lu S, Bu H, Xi K, Su Y, Ding S. ACS Appl Mater Interfaces; 2022 Apr 27; 14(16):18360-18372. PubMed ID: 35413174 [Abstract] [Full Text] [Related]
22. Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. Ma Q, Qi X, Tong B, Zheng Y, Feng W, Nie J, Hu YS, Li H, Huang X, Chen L, Zhou Z. ACS Appl Mater Interfaces; 2016 Nov 02; 8(43):29705-29712. PubMed ID: 27726333 [Abstract] [Full Text] [Related]
23. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Bonizzoni S, Ferrara C, Berbenni V, Anselmi-Tamburini U, Mustarelli P, Tealdi C. Phys Chem Chem Phys; 2019 Mar 13; 21(11):6142-6149. PubMed ID: 30820495 [Abstract] [Full Text] [Related]
24. PEO-Based Block Copolymer Electrolytes Containing Double Conductive Phases with Improved Mechanical and Electrochemical Properties. Zhang ZK, Ding SP, Ye Z, Xia DL, Xu JT. Materials (Basel); 2022 Nov 09; 15(22):. PubMed ID: 36431415 [Abstract] [Full Text] [Related]
25. Enhanced ionic conductivity and mechanical strength in nanocomposite electrolytes with nonlinear polymer architectures. Bakar R, Darvishi S, Şenses E. Turk J Chem; 2023 Nov 09; 47(1):242-252. PubMed ID: 37720861 [Abstract] [Full Text] [Related]
26. Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance. Xu Y, Zhang S, Liang T, Yao Z, Wang X, Gu C, Xia X, Tu J. ACS Appl Mater Interfaces; 2021 Mar 10; 13(9):11018-11025. PubMed ID: 33629848 [Abstract] [Full Text] [Related]
27. Coupling Particle Ordering and Spherulitic Growth for Long-Term Performance of Nanocellulose/Poly(ethylene oxide) Electrolytes. Bobrov G, Kedzior SA, Pervez SA, Govedarica A, Kloker G, Fichtner M, Michaelis VK, Bernard GM, Veelken PM, Hausen F, Trifkovic M. ACS Appl Mater Interfaces; 2023 Jan 11; 15(1):1996-2008. PubMed ID: 36592370 [Abstract] [Full Text] [Related]
28. On the interfacial lithium dynamics in Li7La3Zr2O12:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement. Bonilla MR, García Daza FA, Cortés HA, Carrasco J, Akhmatskaya E. J Colloid Interface Sci; 2022 Oct 11; 623():870-882. PubMed ID: 35636295 [Abstract] [Full Text] [Related]
29. High Performance Ternary Solid Polymer Electrolytes Based on High Dielectric Poly(vinylidene fluoride) Copolymers for Solid State Lithium-Ion Batteries. Barbosa JC, Correia DM, Fidalgo-Marijuan A, Gonçalves R, Ferdov S, de Zea Bermudez V, Lanceros-Mendez S, Costa CM. ACS Appl Mater Interfaces; 2023 Jul 12; 15(27):32301-32312. PubMed ID: 37379238 [Abstract] [Full Text] [Related]
30. Cyclopropenium Cationic-Based Covalent Organic Polymer-Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for All-Solid-State Li-S Battery. Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X. ACS Appl Mater Interfaces; 2021 Apr 14; 13(14):16469-16477. PubMed ID: 33813826 [Abstract] [Full Text] [Related]
33. Negatively Charged Laponite Sheets Enhanced Solid Polymer Electrolytes for Long-Cycling Lithium-Metal Batteries. Li J, Li F, Li D, Cheng D, Wang Z, Liu X, Wang H, Zeng X, Huang Y, Xu H. ACS Appl Mater Interfaces; 2023 Jan 25; 15(3):4044-4052. PubMed ID: 36630422 [Abstract] [Full Text] [Related]
34. Ionic Conductivity Enhancement in UHMW PEO Gel Electrolytes Based on Room-Temperature Ionic Liquids and Deep Eutectic Solvents. Gregorio V, García N, Tiemblo P. ACS Appl Polym Mater; 2022 Apr 08; 4(4):2860-2870. PubMed ID: 35434637 [Abstract] [Full Text] [Related]