These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Lutein esterification increases carotenoid retention in durum wheat grain. A step further in breeding and improving the commercial and nutritional quality during grain storage. Requena-Ramírez MD, Rodríguez-Suárez C, Hornero-Méndez D, Atienza SG. Food Chem; 2024 Mar 01; 435():137660. PubMed ID: 37832338 [Abstract] [Full Text] [Related]
5. Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza SG. Plant Mol Biol; 2014 Apr 01; 84(6):659-73. PubMed ID: 24306494 [Abstract] [Full Text] [Related]
6. A GDSL Esterase/Lipase Catalyzes the Esterification of Lutein in Bread Wheat. Watkins JL, Li M, McQuinn RP, Chan KX, McFarlane HE, Ermakova M, Furbank RT, Mares D, Dong C, Chalmers KJ, Sharp P, Mather DE, Pogson BJ. Plant Cell; 2019 Dec 01; 31(12):3092-3112. PubMed ID: 31575724 [Abstract] [Full Text] [Related]
7. The breeder's tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes. Rodríguez-Suárez C, Requena-Ramírez MD, Hornero-Méndez D, Atienza SG. Methods Enzymol; 2022 Dec 01; 671():99-125. PubMed ID: 35878995 [Abstract] [Full Text] [Related]
8. Bread Wheat Biofortification for Grain Carotenoid Content by Inter-Specific Breeding. Requena-Ramírez MD, Rodríguez-Suárez C, Ávila CM, Palomino C, Hornero-Méndez D, Atienza SG. Foods; 2023 Mar 23; 12(7):. PubMed ID: 37048186 [Abstract] [Full Text] [Related]
9. Carotenoid evolution during short-storage period of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) whole-grain flours. Mellado-Ortega E, Hornero-Méndez D. Food Chem; 2016 Feb 01; 192():714-23. PubMed ID: 26304402 [Abstract] [Full Text] [Related]
10. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions. Atienza SG, Ballesteros J, Martín A, Hornero-Méndez D. J Agric Food Chem; 2007 May 16; 55(10):4244-51. PubMed ID: 17439153 [Abstract] [Full Text] [Related]
11. Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. Verlotta A, De Simone V, Mastrangelo AM, Cattivelli L, Papa R, Trono D. BMC Plant Biol; 2010 Nov 26; 10():263. PubMed ID: 21110856 [Abstract] [Full Text] [Related]
12. Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, de Camargo AC, Schwember AR, Gadaleta A. Front Plant Sci; 2019 Nov 26; 10():1347. PubMed ID: 31787991 [Abstract] [Full Text] [Related]
13. Effect of long-term storage on the free and esterified carotenoids in durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) grains. Mellado-Ortega E, Hornero-Méndez D. Food Res Int; 2017 Sep 26; 99(Pt 2):877-890. PubMed ID: 28847425 [Abstract] [Full Text] [Related]
14. Marker-Trait Associations for Total Carotenoid Content and Individual Carotenoids in Durum Wheat Identified by Genome-Wide Association Analysis. Requena-Ramírez MD, Rodríguez-Suárez C, Flores F, Hornero-Méndez D, Atienza SG. Plants (Basel); 2022 Aug 07; 11(15):. PubMed ID: 35956543 [Abstract] [Full Text] [Related]
15. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. Garcia Molina MD, Botticella E, Beleggia R, Palombieri S, De Vita P, Masci S, Lafiandra D, Sestili F. Theor Appl Genet; 2021 Dec 07; 134(12):4013-4024. PubMed ID: 34477900 [Abstract] [Full Text] [Related]
16. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures. Mellado-Ortega E, Hornero-Méndez D. Foods; 2017 Dec 11; 6(12):. PubMed ID: 29232927 [Abstract] [Full Text] [Related]
17. Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification. Cruet-Burgos C, Rhodes DH. BMC Genomics; 2023 May 03; 24(1):233. PubMed ID: 37138226 [Abstract] [Full Text] [Related]
18. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies. Cruet-Burgos C, Morris GP, Rhodes DH. BMC Plant Biol; 2023 Mar 28; 23(1):165. PubMed ID: 36977987 [Abstract] [Full Text] [Related]
19. Carotenoid content in tritordeum is not primarily associated with esterification during grain development. Mattera MG, Hornero-Méndez D, Atienza SG. Food Chem; 2020 Apr 25; 310():125847. PubMed ID: 31732244 [Abstract] [Full Text] [Related]
20. Lutein ester profile in wheat and tritordeum can be modulated by temperature: Evidences for regioselectivity and fatty acid preferential of enzymes encoded by genes on chromosomes 7D and 7Hch. Mattera MG, Hornero-Méndez D, Atienza SG. Food Chem; 2017 Mar 15; 219():199-206. PubMed ID: 27765217 [Abstract] [Full Text] [Related] Page: [Next] [New Search]