These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 37679429

  • 1. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions.
    Singh A, Schnürer A, Dolfing J, Westerholm M.
    ISME J; 2023 Nov; 17(11):1966-1978. PubMed ID: 37679429
    [Abstract] [Full Text] [Related]

  • 2. Impact of additives on syntrophic propionate and acetate enrichments under high-ammonia conditions.
    Pinela E, Schnürer A, Neubeck A, Moestedt J, Westerholm M.
    Appl Microbiol Biotechnol; 2024 Aug 07; 108(1):433. PubMed ID: 39110235
    [Abstract] [Full Text] [Related]

  • 3. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level.
    Singh A, Schnürer A, Westerholm M.
    Environ Microbiol; 2021 Mar 07; 23(3):1620-1637. PubMed ID: 33400377
    [Abstract] [Full Text] [Related]

  • 4. Catabolism and interactions of syntrophic propionate- and acetate oxidizing microorganisms under mesophilic, high-ammonia conditions.
    Weng N, Singh A, Ohlsson JA, Dolfing J, Westerholm M.
    Front Microbiol; 2024 Mar 07; 15():1389257. PubMed ID: 38933034
    [Abstract] [Full Text] [Related]

  • 5. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L, Ma J, Tang J, Tang Z, Zhou S.
    Microb Ecol; 2017 May 07; 73(4):916-924. PubMed ID: 27815590
    [Abstract] [Full Text] [Related]

  • 6. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats.
    Chen YT, Zeng Y, Wang HZ, Zheng D, Kamagata Y, Narihiro T, Nobu MK, Tang YQ.
    Microb Ecol; 2020 Jul 07; 80(1):120-132. PubMed ID: 31982930
    [Abstract] [Full Text] [Related]

  • 7. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O, Hink L, Horn MA, Drake HL.
    ISME J; 2016 Aug 07; 10(8):1954-66. PubMed ID: 26771931
    [Abstract] [Full Text] [Related]

  • 8. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.
    Wang H, Fotidis IA, Angelidaki I.
    FEMS Microbiol Ecol; 2015 Nov 07; 91(11):. PubMed ID: 26490748
    [Abstract] [Full Text] [Related]

  • 9. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment.
    Montag D, Schink B.
    Appl Environ Microbiol; 2018 Oct 15; 84(20):. PubMed ID: 30097443
    [Abstract] [Full Text] [Related]

  • 10. Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
    Zeng Y, Zheng D, Li L-P, Wang M, Gou M, Kamagata Y, Chen Y-T, Nobu MK, Tang Y-Q.
    Appl Environ Microbiol; 2024 Feb 21; 90(2):e0109023. PubMed ID: 38259075
    [Abstract] [Full Text] [Related]

  • 11. Diverse electron carriers drive syntrophic interactions in an enriched anaerobic acetate-oxidizing consortium.
    McDaniel EA, Scarborough M, Mulat DG, Lin X, Sampara PS, Olson HM, Young RP, Eder EK, Attah IK, Markillie LM, Hoyt DW, Lipton MS, Hallam SJ, Ziels RM.
    ISME J; 2023 Dec 21; 17(12):2326-2339. PubMed ID: 37880541
    [Abstract] [Full Text] [Related]

  • 12. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens in anaerobic digestion.
    Lv N, Zhao L, Wang R, Ning J, Pan X, Li C, Cai G, Zhu G.
    Bioresour Technol; 2020 Oct 21; 313():123702. PubMed ID: 32615503
    [Abstract] [Full Text] [Related]

  • 13. Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing.
    Zheng D, Wang HZ, Gou M, Nobu MK, Narihiro T, Hu B, Nie Y, Tang YQ.
    Appl Microbiol Biotechnol; 2019 Oct 21; 103(20):8631-8645. PubMed ID: 31418053
    [Abstract] [Full Text] [Related]

  • 14. Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress.
    Zhang L, Gong X, Chen Z, Zhou Y.
    Bioresour Technol; 2022 Sep 21; 360():127574. PubMed ID: 35792328
    [Abstract] [Full Text] [Related]

  • 15. Syntrophic propionate-oxidizing bacteria in methanogenic systems.
    Westerholm M, Calusinska M, Dolfing J.
    FEMS Microbiol Rev; 2022 Mar 03; 46(2):. PubMed ID: 34875063
    [Abstract] [Full Text] [Related]

  • 16. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations.
    Zhuang L, Ma J, Yu Z, Wang Y, Tang J.
    Microb Biotechnol; 2018 Jul 03; 11(4):710-720. PubMed ID: 29896929
    [Abstract] [Full Text] [Related]

  • 17. Syntrophic propionate degradation in anaerobic digestion facilitated by hydrochar: Microbial insights as revealed by genome-centric metatranscriptomics.
    Shi Z, Zhang C, Sun M, Usman M, Cui Y, Zhang S, Ni B, Luo G.
    Environ Res; 2024 Nov 15; 261():119717. PubMed ID: 39094895
    [Abstract] [Full Text] [Related]

  • 18. Analysis of propionate-degrading consortia from agricultural biogas plants.
    Ahlert S, Zimmermann R, Ebling J, König H.
    Microbiologyopen; 2016 Dec 15; 5(6):1027-1037. PubMed ID: 27364538
    [Abstract] [Full Text] [Related]

  • 19. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion.
    Dyksma S, Gallert C.
    Environ Microbiol Rep; 2019 Aug 15; 11(4):558-570. PubMed ID: 30985964
    [Abstract] [Full Text] [Related]

  • 20. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer.
    Felchner-Zwirello M, Winter J, Gallert C.
    Appl Microbiol Biotechnol; 2013 Oct 15; 97(20):9193-205. PubMed ID: 23233207
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.