These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


295 related items for PubMed ID: 37685276

  • 21. Ten-Year Multicenter Retrospective Study Utilizing Machine Learning Algorithms to Identify Patients at High Risk of Venous Thromboembolism After Radical Gastrectomy.
    Liu Y, Song C, Tian Z, Shen W.
    Int J Gen Med; 2023; 16():1909-1925. PubMed ID: 37228741
    [Abstract] [Full Text] [Related]

  • 22. Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer.
    Yu M, Yuan Z, Li R, Shi B, Wan D, Dong X.
    Front Oncol; 2024; 14():1337219. PubMed ID: 38380369
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Interpretable Machine Learning Model for Predicting the Prognosis of Guillain-Barré Syndrome Patients.
    Guo J, Zhang R, Dong R, Yang F, Wang Y, Miao W.
    J Inflamm Res; 2024; 17():5901-5913. PubMed ID: 39247840
    [Abstract] [Full Text] [Related]

  • 28. Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study.
    Soldera J, Corso LL, Rech MM, Ballotin VR, Bigarella LG, Tomé F, Moraes N, Balbinot RS, Rodriguez S, Brandão ABM, Hochhegger B.
    World J Hepatol; 2024 Feb 27; 16(2):193-210. PubMed ID: 38495288
    [Abstract] [Full Text] [Related]

  • 29. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma.
    Feng M, Zhang J, Zhou X, Mo H, Jia L, Zhang C, Hu Y, Yuan W.
    J Oncol; 2022 Feb 27; 2022():6356399. PubMed ID: 36411795
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J, Wang X, Wan H, Lin C, Shao Z, Chang Y, Wang H, Wu Y, Zhang T, Du Y.
    BMC Med Inform Decis Mak; 2022 Oct 25; 22(1):278. PubMed ID: 36284327
    [Abstract] [Full Text] [Related]

  • 33. Prediction of low cardiac output syndrome in patients following cardiac surgery using machine learning.
    Hong L, Xu H, Ge C, Tao H, Shen X, Song X, Guan D, Zhang C.
    Front Med (Lausanne); 2022 Oct 25; 9():973147. PubMed ID: 36091676
    [Abstract] [Full Text] [Related]

  • 34. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study.
    Yu JR, Chen CH, Huang TW, Lu JJ, Chung CR, Lin TW, Wu MH, Tseng YJ, Wang HY.
    J Med Internet Res; 2022 Jan 25; 24(1):e28036. PubMed ID: 35076405
    [Abstract] [Full Text] [Related]

  • 35. Machine learning for the early prediction of acute respiratory distress syndrome (ARDS) in patients with sepsis in the ICU based on clinical data.
    Jiang Z, Liu L, Du L, Lv S, Liang F, Luo Y, Wang C, Shen Q.
    Heliyon; 2024 Mar 30; 10(6):e28143. PubMed ID: 38533071
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Development of Cost-Effective Fatty Liver Disease Prediction Models in a Chinese Population: Statistical and Machine Learning Approaches.
    Zhang L, Huang Y, Huang M, Zhao CH, Zhang YJ, Wang Y.
    JMIR Form Res; 2024 Feb 16; 8():e53654. PubMed ID: 38363597
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.