These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 37696727

  • 1. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking.
    Chen A, Halilovic L, Shay JH, Koch A, Mitter N, Jin H.
    Curr Opin Plant Biol; 2023 Dec; 76():102441. PubMed ID: 37696727
    [Abstract] [Full Text] [Related]

  • 2. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection.
    Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H.
    Plant Biotechnol J; 2023 Apr; 21(4):854-865. PubMed ID: 36601704
    [Abstract] [Full Text] [Related]

  • 3. RNA-Based Control of Fungal Pathogens in Plants.
    Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL.
    Int J Mol Sci; 2023 Aug 03; 24(15):. PubMed ID: 37569766
    [Abstract] [Full Text] [Related]

  • 4. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E, Kamal NM, Tsujimoto H.
    Int J Mol Sci; 2021 Jul 19; 22(14):. PubMed ID: 34299307
    [Abstract] [Full Text] [Related]

  • 5. Cross-Kingdom RNA Transport Based on Extracellular Vesicles Provides Innovative Tools for Plant Protection.
    Zhao Y, Zhou Y, Xu J, Fan S, Zhu N, Meng Q, Dai S, Yuan X.
    Plants (Basel); 2024 Sep 27; 13(19):. PubMed ID: 39409582
    [Abstract] [Full Text] [Related]

  • 6. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection.
    Wang M, Jin H.
    Trends Microbiol; 2017 Jan 27; 25(1):4-6. PubMed ID: 27923542
    [Abstract] [Full Text] [Related]

  • 7. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection.
    Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H.
    bioRxiv; 2023 Jan 06. PubMed ID: 36711993
    [Abstract] [Full Text] [Related]

  • 8. Cross-kingdom RNA trafficking and environmental RNAi-nature's blueprint for modern crop protection strategies.
    Cai Q, He B, Kogel KH, Jin H.
    Curr Opin Microbiol; 2018 Dec 06; 46():58-64. PubMed ID: 29549797
    [Abstract] [Full Text] [Related]

  • 9. Isolation and Characterization of Barley (Hordeum vulgare) Extracellular Vesicles to Assess Their Role in RNA Spray-Based Crop Protection.
    Schlemmer T, Barth P, Weipert L, Preußer C, Hardt M, Möbus A, Busche T, Koch A.
    Int J Mol Sci; 2021 Jul 05; 22(13):. PubMed ID: 34281265
    [Abstract] [Full Text] [Related]

  • 10. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops.
    Rodriguez Coy L, Plummer KM, Khalifa ME, MacDiarmid RM.
    Front Fungal Biol; 2022 Jul 05; 3():965781. PubMed ID: 37746227
    [Abstract] [Full Text] [Related]

  • 11. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R, Wang M, Qiao L, Jin H.
    Methods Mol Biol; 2020 Jul 05; 2166():215-225. PubMed ID: 32710411
    [Abstract] [Full Text] [Related]

  • 12. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
    Niño-Sánchez J, Sambasivam PT, Sawyer A, Hamby R, Chen A, Czislowski E, Li P, Manzie N, Gardiner DM, Ford R, Xu ZP, Mitter N, Jin H.
    J Integr Plant Biol; 2022 Nov 05; 64(11):2187-2198. PubMed ID: 36040241
    [Abstract] [Full Text] [Related]

  • 13. RNAs - a new frontier in crop protection.
    Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H.
    Curr Opin Biotechnol; 2021 Aug 05; 70():204-212. PubMed ID: 34217122
    [Abstract] [Full Text] [Related]

  • 14. Cross-Kingdom Small RNAs Among Animals, Plants and Microbes.
    Zeng J, Gupta VK, Jiang Y, Yang B, Gong L, Zhu H.
    Cells; 2019 Apr 23; 8(4):. PubMed ID: 31018602
    [Abstract] [Full Text] [Related]

  • 15. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection.
    Wang M, Thomas N, Jin H.
    Curr Opin Plant Biol; 2017 Aug 23; 38():133-141. PubMed ID: 28570950
    [Abstract] [Full Text] [Related]

  • 16. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice.
    Sarkar A, Roy-Barman S.
    Front Plant Sci; 2021 Aug 23; 12():733129. PubMed ID: 34899771
    [Abstract] [Full Text] [Related]

  • 17. Advances in the mechanisms and applications of RNA silencing in crop protection.
    Tian W, Chen T, Liu QY, Zhang BS, Guo HS, Zhao JH.
    Yi Chuan; 2024 Apr 20; 46(4):266-278. PubMed ID: 38632090
    [Abstract] [Full Text] [Related]

  • 18. Spray-Induced Gene Silencing to Study Gene Function in Phytophthora.
    Sundararajan P, Kalyandurg PB, Liu Q, Chawade A, Whisson SC, Vetukuri RR.
    Methods Mol Biol; 2022 Apr 20; 2536():459-474. PubMed ID: 35819621
    [Abstract] [Full Text] [Related]

  • 19. RNA Interference Past and Future Applications in Plants.
    Koeppe S, Kawchuk L, Kalischuk M.
    Int J Mol Sci; 2023 Jun 05; 24(11):. PubMed ID: 37298705
    [Abstract] [Full Text] [Related]

  • 20. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL, Fletcher SJ, Brosnan CA, Ghodke AB, Manzie N, Mitter N.
    Int J Mol Sci; 2022 Jun 14; 23(12):. PubMed ID: 35743077
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.