These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 3770303

  • 1. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP, Erickson CA.
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [Abstract] [Full Text] [Related]

  • 2. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP, Erickson CA.
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [Abstract] [Full Text] [Related]

  • 3. The role of glycosaminoglycans in anuran pigment cell migration.
    Tucker RP.
    J Embryol Exp Morphol; 1986 Mar; 92():145-64. PubMed ID: 3723060
    [Abstract] [Full Text] [Related]

  • 4. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH, Löfberg J.
    Adv Anat Embryol Cell Biol; 1990 Mar; 118():1-99. PubMed ID: 2368640
    [Abstract] [Full Text] [Related]

  • 5. Homology and evolutionary novelty in the deployment of extracellular matrix molecules during pigment pattern formation in the salamanders Taricha torosa and T. rivularis (Salamandridae).
    Parichy DM.
    J Exp Zool; 2001 Apr 15; 291(1):13-24. PubMed ID: 11335913
    [Abstract] [Full Text] [Related]

  • 6. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae).
    Parichy DM.
    Dev Biol; 1996 May 01; 175(2):283-300. PubMed ID: 8626033
    [Abstract] [Full Text] [Related]

  • 7. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique.
    Tucker RP, Erickson CA.
    J Exp Zool; 1986 Nov 01; 240(2):173-82. PubMed ID: 2432154
    [Abstract] [Full Text] [Related]

  • 8. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms.
    Parichy DM.
    Dev Biol; 1996 May 01; 175(2):265-82. PubMed ID: 8626032
    [Abstract] [Full Text] [Related]

  • 9. The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos.
    Epperlein HH, Halfter W, Tucker RP.
    Development; 1988 Aug 01; 103(4):743-56. PubMed ID: 2470571
    [Abstract] [Full Text] [Related]

  • 10. Changes in the distribution of melanophores and xanthophores inTriturus alpestris embryos during their transition from the uniform to banded pattern.
    Epperlein HH, Claviez M.
    Wilehm Roux Arch Dev Biol; 1982 Jan 01; 191(1):5-18. PubMed ID: 28305417
    [Abstract] [Full Text] [Related]

  • 11. Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants.
    Svetic V, Hollway GE, Elworthy S, Chipperfield TR, Davison C, Adams RJ, Eisen JS, Ingham PW, Currie PD, Kelsh RN.
    Development; 2007 Mar 01; 134(5):1011-22. PubMed ID: 17267445
    [Abstract] [Full Text] [Related]

  • 12. Promotion of chromatophore differentiation in isolated premigratory neural crest cells by extracellular matrix material explanted on microcarriers.
    Perris R, Löfberg J.
    Dev Biol; 1986 Feb 01; 113(2):327-41. PubMed ID: 3081390
    [Abstract] [Full Text] [Related]

  • 13. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation.
    Patterson LB, Parichy DM.
    PLoS Genet; 2013 May 01; 9(5):e1003561. PubMed ID: 23737760
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae.
    Macmillan GJ.
    J Embryol Exp Morphol; 1976 Jun 01; 35(3):463-84. PubMed ID: 947992
    [Abstract] [Full Text] [Related]

  • 16. Xanthophores in chromatophore groups of the premigratory neural crest initiate the pigment pattern of the axolotl larva.
    Epperlein HH, Löfberg J.
    Wilehm Roux Arch Dev Biol; 1984 Nov 01; 193(6):357-369. PubMed ID: 28305101
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis.
    Parichy DM, Turner JM.
    Dev Biol; 2003 Apr 15; 256(2):242-57. PubMed ID: 12679100
    [Abstract] [Full Text] [Related]

  • 19. Flexibility of pigment cell behavior permits the robustness of skin pattern formation.
    Sawada R, Aramaki T, Kondo S.
    Genes Cells; 2018 Jul 15; 23(7):537-545. PubMed ID: 29797484
    [Abstract] [Full Text] [Related]

  • 20. Morphogenesis of sclerotome and neural crest in avian embryos. In vivo and in vitro studies on the role of notochordal extracellular material.
    Newgreen DF, Scheel M, Kastner V.
    Cell Tissue Res; 1986 Jul 15; 244(2):299-313. PubMed ID: 3719666
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.