These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 37703858

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT.
    Nanomaterials (Basel); 2023 May 29; 13(11):. PubMed ID: 37299660
    [Abstract] [Full Text] [Related]

  • 3. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA, Martins GB.
    J Phys Condens Matter; 2022 Jun 17; 34(33):. PubMed ID: 35675807
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Room temperature thermal rectification in suspended asymmetric graphene ribbon.
    Islam MR, Yongzheng L, Kareekunnan A, Mizuta H.
    Nanotechnology; 2024 Jun 18; 35(36):. PubMed ID: 38848694
    [Abstract] [Full Text] [Related]

  • 6. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT.
    RSC Adv; 2024 Jan 17; 14(5):3513-3518. PubMed ID: 38259995
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Rectification, transport properties of doped defective graphene nanoribbon junctions.
    Zaminpayma E, Nayebi P, Emami-Razavi M.
    Nanotechnology; 2021 May 14; 32(20):205204. PubMed ID: 33571982
    [Abstract] [Full Text] [Related]

  • 11. Stability conditions of armchair graphene nanoribbon bipolarons.
    Abreu AVP, Ribeiro Junior LA, Silva GG, Pereira Junior ML, Enders BG, Fonseca ALA, E Silva GM.
    J Mol Model; 2019 Jul 24; 25(8):245. PubMed ID: 31342176
    [Abstract] [Full Text] [Related]

  • 12. Charge transport through the multiple end zigzag edge states of armchair graphene nanoribbons and heterojunctions.
    Kuo DMT.
    RSC Adv; 2024 Jun 18; 14(28):20113-20119. PubMed ID: 38915325
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering.
    Tran VT, Saint-Martin J, Dollfus P.
    Nanotechnology; 2015 Dec 11; 26(49):495202. PubMed ID: 26574344
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports.
    Gao Y, Xu B.
    ACS Appl Mater Interfaces; 2017 Oct 04; 9(39):34506-34517. PubMed ID: 28895714
    [Abstract] [Full Text] [Related]

  • 19. Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study.
    Zanane FZ, Sadki K, Drissi LB, Saidi EH.
    J Mol Model; 2022 Mar 10; 28(4):88. PubMed ID: 35267102
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.