These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 37707398

  • 1. Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning-Based Reconstruction Algorithm.
    Nakamoto A, Onishi H, Tsuboyama T, Fukui H, Ota T, Ogawa K, Yano K, Kiso K, Honda T, Tatsumi M, Tomiyama N.
    J Comput Assist Tomogr; ; 47(5):698-703. PubMed ID: 37707398
    [Abstract] [Full Text] [Related]

  • 2. Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.
    Bellmann Q, Peng Y, Genske U, Yan L, Wagner M, Jahnke P.
    Eur Radiol Exp; 2024 Jul 24; 8(1):84. PubMed ID: 39046565
    [Abstract] [Full Text] [Related]

  • 3. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA, Driessen J, Koetzier LR, Ruules LB, Willemink MJ, Heemskerk JWT, van der Molen AJ.
    Eur Radiol; 2022 May 24; 32(5):2921-2929. PubMed ID: 34913104
    [Abstract] [Full Text] [Related]

  • 4. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W, Kim M, Hwang JY, Kim YW, Park C, Choo KS, Kim TU, Jang JY.
    Korean J Radiol; 2022 Jul 24; 23(7):752-762. PubMed ID: 35695313
    [Abstract] [Full Text] [Related]

  • 5. Diagnostic performance of reduced-dose CT with a hybrid iterative reconstruction algorithm for the detection of hypervascular liver lesions: a phantom study.
    Nakamoto A, Tanaka Y, Juri H, Nakai G, Yoshikawa S, Narumi Y.
    Eur Radiol; 2017 Jul 24; 27(7):2995-3003. PubMed ID: 27957640
    [Abstract] [Full Text] [Related]

  • 6. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction.
    Otgonbaatar C, Ryu JK, Shin J, Woo JY, Seo JW, Shim H, Hwang DH.
    Korean J Radiol; 2022 Nov 24; 23(11):1044-1054. PubMed ID: 36196766
    [Abstract] [Full Text] [Related]

  • 7. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA, Villani N, Gillet R, Germain E, Lombard C, Blum A, Gondim Teixeira PA.
    Eur Radiol; 2022 May 24; 32(5):3161-3172. PubMed ID: 34989850
    [Abstract] [Full Text] [Related]

  • 8. [Effect of Deep Learning-based Contrast-enhanced CT Image Reconstruction on the Image Quality of the Biliary System].
    Wang ST, Xu J, Wang X, Wang Y, Xue HD, Jin ZY.
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2022 Aug 24; 44(4):614-620. PubMed ID: 36065694
    [Abstract] [Full Text] [Related]

  • 9. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction.
    Zhang D, Mu C, Zhang X, Yan J, Xu M, Wang Y, Wang Y, Xue H, Chen Y, Jin Z.
    BMC Med Imaging; 2023 Feb 19; 23(1):33. PubMed ID: 36800947
    [Abstract] [Full Text] [Related]

  • 10. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y, Goto M, Sakabe D, Emoto T, Shigematsu S, Oda S, Tanoue S, Kidoh M, Nakaura T, Funama Y, Uchimura R, Takada S, Hayashi H, Hatemura M, Hirai T.
    AJR Am J Roentgenol; 2022 Aug 19; 219(2):315-324. PubMed ID: 35195431
    [Abstract] [Full Text] [Related]

  • 11. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y, Emoto T, Kato Y, Kidoh M, Oda S, Sakabe D, Funama Y, Nakaura T, Hayashi H, Takada S, Uchimura R, Hatemura M, Tsujita K, Hirai T.
    Eur Radiol; 2023 Dec 19; 33(12):8488-8500. PubMed ID: 37432405
    [Abstract] [Full Text] [Related]

  • 12. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction.
    Otgonbaatar C, Ryu JK, Shin J, Kim HM, Seo JW, Shim H, Hwang DH.
    Acta Radiol; 2023 Mar 19; 64(3):1007-1017. PubMed ID: 35979586
    [Abstract] [Full Text] [Related]

  • 13. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A, Mukaida E, Ota Y, Kamata M, Abe S, Yoshioka K.
    Br J Radiol; 2021 Jul 01; 94(1123):20201357. PubMed ID: 34142867
    [Abstract] [Full Text] [Related]

  • 14. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ, Meijer FJA, de Lange F, Smit EJ, Pegge SA, Steens SCA, van Amerongen MJ, Prokop M, Sechopoulos I.
    Eur Radiol; 2021 Aug 01; 31(8):5498-5506. PubMed ID: 33693996
    [Abstract] [Full Text] [Related]

  • 15. [Application of Deep Learning Reconstruction Algorithm in Low-Dose Thin-Slice Liver CT of Healthy Volunteers].
    Zeng LM, Xu X, Zeng W, Peng WL, Zhang JG, Hu SX, Liu KL, Xia CC, Li ZL.
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Sep 01; 52(5):807-812. PubMed ID: 34622597
    [Abstract] [Full Text] [Related]

  • 16. Assessing the Effects of Deep Learning Reconstruction on Abdominal CT Without Arm Elevation.
    Fujita N, Yasaka K, Katayama A, Ohtake Y, Konishiike M, Abe O.
    Can Assoc Radiol J; 2023 Nov 01; 74(4):688-694. PubMed ID: 37041699
    [Abstract] [Full Text] [Related]

  • 17. Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction.
    Park J, Shin J, Min IK, Bae H, Kim YE, Chung YE.
    Korean J Radiol; 2022 Apr 01; 23(4):402-412. PubMed ID: 35289146
    [Abstract] [Full Text] [Related]

  • 18. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR.
    Radiology; 2021 Jan 01; 298(1):180-188. PubMed ID: 33201790
    [No Abstract] [Full Text] [Related]

  • 19. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study.
    Greffier J, Si-Mohamed S, Frandon J, Loisy M, de Oliveira F, Beregi JP, Dabli D.
    Med Phys; 2022 Aug 01; 49(8):5052-5063. PubMed ID: 35696272
    [Abstract] [Full Text] [Related]

  • 20. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, Hoi Y, Akino N, Angel E, Madan R, Kalra MK.
    AJR Am J Roentgenol; 2020 Mar 01; 214(3):566-573. PubMed ID: 31967501
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.