These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 37710161

  • 1. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis.
    Zhou P, Li J, Jiang H, Jin Q, Wang Y, Xu Y.
    BMC Plant Biol; 2023 Sep 15; 23(1):429. PubMed ID: 37710161
    [Abstract] [Full Text] [Related]

  • 2. Analysis of bZIP transcription factors in Rhododendron simsii and functional study of RsbZIP6 in regulating anthocyanin biosynthesis.
    Wang C, Liu Y, Li Y, Guo L, Li C.
    Int J Biol Macromol; 2024 Nov 15; 280(Pt 2):135889. PubMed ID: 39307497
    [Abstract] [Full Text] [Related]

  • 3. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum).
    Wang S, Zhang X, Li B, Zhao X, Shen Y, Yuan Z.
    BMC Plant Biol; 2022 Apr 04; 22(1):170. PubMed ID: 35379169
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation.
    Liu J, Wang Y, Zhang M, Wang Y, Deng X, Sun H, Yang D, Xu L, Song H, Yang M.
    Plant Physiol Biochem; 2022 May 15; 179():100-107. PubMed ID: 35325657
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis.
    Liu Z, Wu X, Wang E, Liu Y, Wang Y, Zheng Q, Han Y, Chen Z, Zhang Y.
    Planta; 2022 Jul 16; 256(2):42. PubMed ID: 35842503
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry.
    Lin Y, Wang Y, Li B, Tan H, Li D, Li L, Liu X, Han J, Meng X.
    Plant Physiol Biochem; 2018 Jun 16; 127():561-572. PubMed ID: 29727860
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Accumulation and regulation of anthocyanins in white and purple Tibetan Hulless Barley (Hordeum vulgare L. var. nudum Hook. f.) revealed by combined de novo transcriptomics and metabolomics.
    Yao X, Yao Y, An L, Li X, Bai Y, Cui Y, Wu K.
    BMC Plant Biol; 2022 Aug 04; 22(1):391. PubMed ID: 35922757
    [Abstract] [Full Text] [Related]

  • 17. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.
    Carletti G, Lucini L, Busconi M, Marocco A, Bernardi J.
    Plant Physiol Biochem; 2013 Sep 04; 70():123-32. PubMed ID: 23774374
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.