These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 3771147

  • 1. Kinetics of ascorbate transport by cultured retinal capillary pericytes. Inhibition by glucose.
    Khatami M, Li WY, Rockey JH.
    Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1665-71. PubMed ID: 3771147
    [Abstract] [Full Text] [Related]

  • 2. Na+-linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: heterologous inhibition by glucose.
    Khatami M.
    Membr Biochem; 1986 Nov; 7(2):115-30. PubMed ID: 3331406
    [Abstract] [Full Text] [Related]

  • 3. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid.
    Fisher EJ, McLennan SV, Yue DK, Turtle JR.
    Microvasc Res; 1994 Sep; 48(2):179-89. PubMed ID: 7854204
    [Abstract] [Full Text] [Related]

  • 4. A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig.
    DiMattio J.
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2320-31. PubMed ID: 2807790
    [Abstract] [Full Text] [Related]

  • 5. Ascorbate transport in cultured cat retinal pigment epithelial cells.
    Khatami M, Stramm LE, Rockey JH.
    Exp Eye Res; 1986 Oct; 43(4):607-15. PubMed ID: 3792463
    [Abstract] [Full Text] [Related]

  • 6. Suppression of sodium-dependent glucose uptake by captopril improves high-glucose-induced morphological and functional changes of cultured bovine retinal pericytes.
    Wakisaka M, Yoshinari M, Nakamura S, Asano T, Sonoki K, Shi Ah, Iwase M, Takata Y, Fujishima M.
    Microvasc Res; 1999 Nov; 58(3):215-23. PubMed ID: 10527765
    [Abstract] [Full Text] [Related]

  • 7. Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes.
    Kim J, Oh YS, Shinn SH.
    Exp Eye Res; 2005 Jul; 81(1):65-70. PubMed ID: 15978256
    [Abstract] [Full Text] [Related]

  • 8. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil.
    Li W, Chan LS, Khatami M, Rockey JH.
    Biochim Biophys Acta; 1986 May 28; 857(2):198-208. PubMed ID: 3085711
    [Abstract] [Full Text] [Related]

  • 9. Facilitated glucose and dehydroascorbate transport in plant mitochondria.
    Szarka A, Horemans N, Bánhegyi G, Asard H.
    Arch Biochem Biophys; 2004 Aug 01; 428(1):73-80. PubMed ID: 15234271
    [Abstract] [Full Text] [Related]

  • 10. Hexose transport in normal and SV40-transformed human endothelial cells in culture.
    Corkey RF, Corkey BE, Gimbrone MA.
    J Cell Physiol; 1981 Mar 01; 106(3):425-34. PubMed ID: 6260823
    [Abstract] [Full Text] [Related]

  • 11. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration.
    Chibber R, Molinatti PA, Kohner EM.
    Cell Mol Biol (Noisy-le-grand); 1999 Feb 01; 45(1):47-57. PubMed ID: 10099839
    [Abstract] [Full Text] [Related]

  • 12. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC.
    Cancer Res; 1997 Jun 15; 57(12):2529-37. PubMed ID: 9192836
    [Abstract] [Full Text] [Related]

  • 13. Monosaccharide transport by Eimeria tenella sporozoites.
    Smith CK, Lee DE.
    J Parasitol; 1986 Feb 15; 72(1):163-9. PubMed ID: 3712172
    [Abstract] [Full Text] [Related]

  • 14. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier.
    Tomi M, Kitade N, Hirose S, Yokota N, Akanuma S, Tachikawa M, Hosoya K.
    J Neurochem; 2009 Nov 15; 111(3):716-25. PubMed ID: 19712052
    [Abstract] [Full Text] [Related]

  • 15. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells.
    Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M, Tsai JY, Kador PF.
    Invest Ophthalmol Vis Sci; 1999 Mar 15; 40(3):697-704. PubMed ID: 10067973
    [Abstract] [Full Text] [Related]

  • 16. Growth regulation of bovine retinal pericytes by transforming growth factor-beta2 and plasmin.
    Katsura MK, Mishima HK, Minamoto A, Ishibashi F, Yamashita H.
    Curr Eye Res; 2000 Mar 15; 20(3):166-72. PubMed ID: 10694890
    [Abstract] [Full Text] [Related]

  • 17. Characterization of glucose transport by bovine retinal capillary pericytes in culture.
    Li W, Chan LS, Khatami M, Rockey JH.
    Exp Eye Res; 1985 Aug 15; 41(2):191-9. PubMed ID: 3905422
    [Abstract] [Full Text] [Related]

  • 18. Ascorbic acid transport and distribution in human B lymphocytes.
    Bergsten P, Yu R, Kehrl J, Levine M.
    Arch Biochem Biophys; 1995 Feb 20; 317(1):208-14. PubMed ID: 7872786
    [Abstract] [Full Text] [Related]

  • 19. Transport of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea in the human glioma cell line SK-MG-1 is mediated by an epinephrine-sensitive carrier system.
    Noë AJ, Malapetsa A, Panasci LC.
    Mol Pharmacol; 1993 Jul 20; 44(1):204-9. PubMed ID: 8341272
    [Abstract] [Full Text] [Related]

  • 20. Dual effect of lipid peroxidation on the membrane order of retinal cells in culture.
    Rego AC, Oliveira CR.
    Arch Biochem Biophys; 1995 Aug 01; 321(1):127-36. PubMed ID: 7639511
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.