These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 3771147

  • 21. 3-O-methyl-D-glucose uptake in isolated rat hepatocytes. Effects of dexamethasone.
    Madar Z, Felig P.
    Mol Pharmacol; 1983 Jan; 23(1):141-5. PubMed ID: 6865898
    [Abstract] [Full Text] [Related]

  • 22. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB, Vera JC, Golde DW.
    Cancer Res; 1999 Sep 15; 59(18):4555-8. PubMed ID: 10493506
    [Abstract] [Full Text] [Related]

  • 23. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.
    Steffner RJ, Wu L, Powers AC, May JM.
    Free Radic Biol Med; 2004 Nov 15; 37(10):1612-21. PubMed ID: 15477012
    [Abstract] [Full Text] [Related]

  • 24. Expression of apoptosis regulatory genes by retinal pericytes after rapid glucose reduction.
    Li W, Liu X, He Z, Yanoff M, Jian B, Ye X.
    Invest Ophthalmol Vis Sci; 1998 Aug 15; 39(9):1535-43. PubMed ID: 9699542
    [Abstract] [Full Text] [Related]

  • 25. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol.
    Daskalopoulos R, Korcok J, Tao L, Wilson JX.
    Glia; 2002 Aug 15; 39(2):124-32. PubMed ID: 12112364
    [Abstract] [Full Text] [Related]

  • 26. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes.
    Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T, Kato K, Kasuya Y, Miwa K, Hotta N.
    Exp Eye Res; 2000 Sep 15; 71(3):309-15. PubMed ID: 10973739
    [Abstract] [Full Text] [Related]

  • 27. Adaptive regulation of ascorbate transport in osteoblastic cells.
    Dixon SJ, Wilson JX.
    J Bone Miner Res; 1992 Jun 15; 7(6):675-81. PubMed ID: 1414486
    [Abstract] [Full Text] [Related]

  • 28. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.
    Kodaman PH, Aten RF, Behrman HR.
    Biol Reprod; 1998 Feb 15; 58(2):407-13. PubMed ID: 9475396
    [Abstract] [Full Text] [Related]

  • 29. Ascorbate uptake by microvascular endothelial cells of rat skeletal muscle.
    Wilson JX, Dixon SJ, Yu J, Nees S, Tyml K.
    Microcirculation; 1996 Jun 15; 3(2):211-21. PubMed ID: 8839443
    [Abstract] [Full Text] [Related]

  • 30. Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. Evidence for Na+-dependent co-transport.
    Diliberto EJ, Heckman GD, Daniels AJ.
    J Biol Chem; 1983 Nov 10; 258(21):12886-94. PubMed ID: 6630211
    [Abstract] [Full Text] [Related]

  • 31. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG, Gitter BD, Rowe JJ.
    J Supramol Struct; 1977 Nov 10; 7(1):49-59. PubMed ID: 415185
    [Abstract] [Full Text] [Related]

  • 32. Hexose transport in microvascular endothelial cells cultured from bovine retina.
    Betz AL, Bowman PD, Goldstein GW.
    Exp Eye Res; 1983 Feb 10; 36(2):269-77. PubMed ID: 6337860
    [Abstract] [Full Text] [Related]

  • 33. Ascorbic acid transport by isolated bovine adrenal cortical cells.
    Finn FM, Johns PA.
    Endocrinology; 1980 Mar 10; 106(3):811-7. PubMed ID: 6243552
    [Abstract] [Full Text] [Related]

  • 34. Transport and stability of ascorbic acid in pituitary cultures.
    Cullen EI, May V, Eipper BA.
    Mol Cell Endocrinol; 1986 Dec 10; 48(2-3):239-50. PubMed ID: 3803708
    [Abstract] [Full Text] [Related]

  • 35. Na+-dependent glucose uptake and collagen synthesis by cultured bovine retinal pericytes.
    Wakisaka M, Yoshinari M, Yamamoto M, Nakamura S, Asano T, Himeno T, Ichikawa K, Doi Y, Fujishima M.
    Biochim Biophys Acta; 1997 Nov 28; 1362(1):87-96. PubMed ID: 9434103
    [Abstract] [Full Text] [Related]

  • 36. Ascorbic acid transport in brain microvascular pericytes.
    Parker WH, Qu ZC, May JM.
    Biochem Biophys Res Commun; 2015 Mar 06; 458(2):262-7. PubMed ID: 25645015
    [Abstract] [Full Text] [Related]

  • 37. High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts.
    Wilson JX, Dixon SJ.
    J Membr Biol; 1989 Oct 06; 111(1):83-91. PubMed ID: 2810353
    [Abstract] [Full Text] [Related]

  • 38. Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes.
    Wilson JX.
    J Neurochem; 1989 Oct 06; 53(4):1064-71. PubMed ID: 2549195
    [Abstract] [Full Text] [Related]

  • 39. Ascorbic acid uptake by young and aged guinea pig lenses.
    Fleming JE, Choi S, Bensch KG.
    Mech Ageing Dev; 1990 Aug 06; 55(2):181-8. PubMed ID: 2232910
    [Abstract] [Full Text] [Related]

  • 40. Ascorbic acid efflux from human brain microvascular pericytes: role of re-uptake.
    May JM, Qu ZC.
    Biofactors; 2015 Aug 06; 41(5):330-8. PubMed ID: 26340060
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.