These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 37715336
1. Optically Active MXenes in Van der Waals Heterostructures. Purbayanto MAK, Chandel M, Birowska M, Rosenkranz A, Jastrzębska AM. Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336 [Abstract] [Full Text] [Related]
2. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures. Lee JY, Shin JH, Lee GH, Lee CH. Nanomaterials (Basel); 2016 Oct 27; 6(11):. PubMed ID: 28335321 [Abstract] [Full Text] [Related]
3. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. Willhelm D, Wilson N, Arroyave R, Qian X, Cagin T, Pachter R, Qian X. ACS Appl Mater Interfaces; 2022 Jun 08; 14(22):25907-25919. PubMed ID: 35622945 [Abstract] [Full Text] [Related]
4. van der Waals Layered Materials: Opportunities and Challenges. Duong DL, Yun SJ, Lee YH. ACS Nano; 2017 Dec 26; 11(12):11803-11830. PubMed ID: 29219304 [Abstract] [Full Text] [Related]
5. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures. Xu C, Ding Y, Wang S, Cao S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 15; 303():123182. PubMed ID: 37517268 [Abstract] [Full Text] [Related]
6. Atomic Spalling of a van der Waals Nanomembrane. Moon JY, Bae SH, Lee JH. Acc Chem Res; 2024 Oct 01; 57(19):2826-2835. PubMed ID: 39265143 [Abstract] [Full Text] [Related]
7. Recent Advances on Tuning the Interlayer Coupling and Properties in van der Waals Heterostructures. Wu X, Chen X, Yang R, Zhan J, Ren Y, Li K. Small; 2022 Apr 01; 18(15):e2105877. PubMed ID: 35044721 [Abstract] [Full Text] [Related]
8. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Choi EM, Sim KI, Burch KS, Lee YH. Adv Sci (Weinh); 2022 Jul 01; 9(21):e2200186. PubMed ID: 35596612 [Abstract] [Full Text] [Related]
14. Large-Area Synthesis of Ferromagnetic Fe5-x GeTe2 /Graphene van der Waals Heterostructures with Curie Temperature above Room Temperature. Lv H, da Silva A, Figueroa AI, Guillemard C, Aguirre IF, Camosi L, Aballe L, Valvidares M, Valenzuela SO, Schubert J, Schmidbauer M, Herfort J, Hanke M, Trampert A, Engel-Herbert R, Ramsteiner M, Lopes JMJ. Small; 2023 Sep 28; 19(39):e2302387. PubMed ID: 37231567 [Abstract] [Full Text] [Related]
15. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures. Wu H, Liu X, Zhu K, Huang Y. Nanomaterials (Basel); 2023 Apr 20; 13(8):. PubMed ID: 37111010 [Abstract] [Full Text] [Related]
17. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Liang SJ, Cheng B, Cui X, Miao F. Adv Mater; 2020 Jul 20; 32(27):e1903800. PubMed ID: 31608514 [Abstract] [Full Text] [Related]
18. High-order superlattices by rolling up van der Waals heterostructures. Zhao B, Wan Z, Liu Y, Xu J, Yang X, Shen D, Zhang Z, Guo C, Qian Q, Li J, Wu R, Lin Z, Yan X, Li B, Zhang Z, Ma H, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X, Huang Y, Ping Y, Duan X, Duan X. Nature; 2021 Mar 20; 591(7850):385-390. PubMed ID: 33731947 [Abstract] [Full Text] [Related]
19. Nanoironing van der Waals Heterostructures toward Electrically Controlled Quantum Dots. Talha-Dean T, Tarn Y, Mukherjee S, John JW, Huang D, Verzhbitskiy IA, Venkatakrishnarao D, Das S, Lee R, Mishra A, Wang S, Ang YS, Johnson Goh KE, Lau CS. ACS Appl Mater Interfaces; 2024 Jun 19; 16(24):31738-31746. PubMed ID: 38843175 [Abstract] [Full Text] [Related]