These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 37716271

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Genetic diversity analysis of Tibetan wild barley using SSR markers.
    Feng ZY, Liu XJ, Zhang YZ, Ling HQ.
    Yi Chuan Xue Bao; 2006 Oct; 33(10):917-28. PubMed ID: 17046592
    [Abstract] [Full Text] [Related]

  • 24. Retrotransposon Insertion and DNA Methylation Regulate Aluminum Tolerance in European Barley Accessions.
    Kashino-Fujii M, Yokosho K, Yamaji N, Yamane M, Saisho D, Sato K, Ma JF.
    Plant Physiol; 2018 Oct; 178(2):716-727. PubMed ID: 30093528
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q, Yang K, Long H, Yu M.
    BMC Genomics; 2017 Oct 11; 18(1):775. PubMed ID: 29020945
    [Abstract] [Full Text] [Related]

  • 29. NHX-Type Na+/H+ Antiporter Gene Expression Under Different Salt Levels and Allelic Diversity of HvNHX in Wild and Cultivated Barleys.
    Jabeen Z, Irshad F, Hussain N, Han Y, Zhang G.
    Front Genet; 2021 Oct 11; 12():809988. PubMed ID: 35273633
    [Abstract] [Full Text] [Related]

  • 30. Natural Variation Uncovers Candidate Genes for Barley Spikelet Number and Grain Yield under Drought Stress.
    Thabet SG, Moursi YS, Karam MA, Börner A, Alqudah AM.
    Genes (Basel); 2020 May 11; 11(5):. PubMed ID: 32403266
    [Abstract] [Full Text] [Related]

  • 31. Most Tibetan weedy barleys originated via recombination between Btr1 and Btr2 in domesticated barley.
    Gao G, Yan L, Cai Y, Guo Y, Jiang C, He Q, Tasnim S, Feng Z, Liu J, Zhang J, Komatsuda T, Mascher M, Yang P.
    Plant Commun; 2024 May 13; 5(5):100828. PubMed ID: 38297838
    [Abstract] [Full Text] [Related]

  • 32. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N, Zhao J, He X, Sun H, Zhang G, Wu F.
    BMC Genomics; 2015 Jun 05; 16(1):432. PubMed ID: 26044796
    [Abstract] [Full Text] [Related]

  • 33. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley.
    Shen Q, Fu L, Dai F, Jiang L, Zhang G, Wu D.
    BMC Genomics; 2016 Nov 07; 17(1):889. PubMed ID: 27821058
    [Abstract] [Full Text] [Related]

  • 34. Identification of proteins associated with ion homeostasis and salt tolerance in barley.
    Wu D, Shen Q, Qiu L, Han Y, Ye L, Jabeen Z, Shu Q, Zhang G.
    Proteomics; 2014 Jun 07; 14(11):1381-92. PubMed ID: 24616274
    [Abstract] [Full Text] [Related]

  • 35. Origin and evolution of qingke barley in Tibet.
    Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S, Mao L, Liu Q, Xia Z, Zhou J, Yuan H, Tai S, Wang Y, Wei Z, Song L, Zha S, Li S, Tang Y, Bai L, Zhuang Z, He W, Zhao S, Fang X, Gao Q, Yin Y, Wang J, Yang H, Zhang J, Henry RJ, Stein N, Tashi N.
    Nat Commun; 2018 Dec 21; 9(1):5433. PubMed ID: 30575759
    [Abstract] [Full Text] [Related]

  • 36. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.
    Dai F, Chen ZH, Wang X, Li Z, Jin G, Wu D, Cai S, Wang N, Wu F, Nevo E, Zhang G.
    Proc Natl Acad Sci U S A; 2014 Sep 16; 111(37):13403-8. PubMed ID: 25197090
    [Abstract] [Full Text] [Related]

  • 37. Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley.
    Zeng J, He X, Quan X, Cai S, Han Y, Nadira UA, Zhang G.
    J Proteomics; 2015 Aug 03; 126():1-11. PubMed ID: 26021476
    [Abstract] [Full Text] [Related]

  • 38. Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley.
    Long L, Ma X, Ye L, Zeng J, Chen G, Zhang G.
    BMC Plant Biol; 2019 Aug 05; 19(1):341. PubMed ID: 31382871
    [Abstract] [Full Text] [Related]

  • 39. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism.
    Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F.
    Plant Physiol; 2023 Aug 31; 193(1):389-409. PubMed ID: 37300541
    [Abstract] [Full Text] [Related]

  • 40. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium.
    Zeng J, He X, Wu D, Zhu B, Cai S, Nadira UA, Jabeen Z, Zhang G.
    PLoS One; 2014 Aug 31; 9(6):e100567. PubMed ID: 24949953
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.