These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


224 related items for PubMed ID: 37726031

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Source-apportionment and spatial distribution analysis of VOCs and their role in ozone formation using machine learning in central-west Taiwan.
    Mishra M, Chen PH, Bisquera W, Lin GY, Le TC, Dejchanchaiwong R, Tekasakul P, Jhang CW, Wu CJ, Tsai CJ.
    Environ Res; 2023 Sep 01; 232():116329. PubMed ID: 37276975
    [Abstract] [Full Text] [Related]

  • 25. The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China.
    Ma Z, Liu C, Zhang C, Liu P, Ye C, Xue C, Zhao D, Sun J, Du Y, Chai F, Mu Y.
    J Environ Sci (China); 2019 May 01; 79():121-134. PubMed ID: 30784438
    [Abstract] [Full Text] [Related]

  • 26. Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation.
    Meng Y, Song J, Zeng L, Zhang Y, Zhao Y, Liu X, Guo H, Zhong L, Ou Y, Zhou Y, Zhang T, Yue D, Lai S.
    J Environ Sci (China); 2022 Jan 01; 111():104-117. PubMed ID: 34949340
    [Abstract] [Full Text] [Related]

  • 27. Characteristics and sources of ambient Volatile Organic Compounds (VOCs) at a regional background site, YRD region, China: Significant influence of solvent evaporation during hot months.
    Xu Z, Zou Q, Jin L, Shen Y, Shen J, Xu B, Qu F, Zhang F, Xu J, Pei X, Xie G, Kuang B, Huang X, Tian X, Wang Z.
    Sci Total Environ; 2023 Jan 20; 857(Pt 3):159674. PubMed ID: 36283529
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. [Chemical Reaction Activity and Source Apportionment of Atmospheric VOCs in Summer in Dalian].
    Zhu KX, Liu LZ, Liu HW, Luo JQ, Gao RR.
    Huan Jing Ke Xue; 2022 Aug 08; 43(8):3944-3952. PubMed ID: 35971693
    [Abstract] [Full Text] [Related]

  • 30. Characteristics and sources of volatile organic compounds (VOCs) in Xinxiang, China, during the 2021 summer ozone pollution control.
    Li Y, Liu Y, Hou M, Huang H, Fan L, Ye D.
    Sci Total Environ; 2022 Oct 10; 842():156746. PubMed ID: 35718178
    [Abstract] [Full Text] [Related]

  • 31. Characteristics, sources of volatile organic compounds, and their contributions to secondary air pollution during different periods in Beijing, China.
    Liang S, Gao S, Wang S, Chai W, Chen W, Tang G.
    Sci Total Environ; 2023 Feb 01; 858(Pt 2):159831. PubMed ID: 36336049
    [Abstract] [Full Text] [Related]

  • 32. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment.
    Zhang L, Li H, Wu Z, Zhang W, Liu K, Cheng X, Zhang Y, Li B, Chen Y.
    J Environ Sci (China); 2020 Sep 01; 95():190-200. PubMed ID: 32653179
    [Abstract] [Full Text] [Related]

  • 33. Source apportionment and ozone formation mechanism of VOCs considering photochemical loss in Guangzhou, China.
    Zou Y, Yan XL, Flores RM, Zhang LY, Yang SP, Fan LY, Deng T, Deng XJ, Ye DQ.
    Sci Total Environ; 2023 Dec 10; 903():166191. PubMed ID: 37567293
    [Abstract] [Full Text] [Related]

  • 34. Effects of coal chemical industry on atmospheric volatile organic compounds emission and ozone formation in a northwestern Chinese city.
    Chen T, Huang L, Zhang X, Gao R, Li H, Fan K, Ma D, Ma Z, Xue L, Wang W.
    Sci Total Environ; 2022 Sep 15; 839():156149. PubMed ID: 35643128
    [Abstract] [Full Text] [Related]

  • 35. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China.
    Zhang Y, Li R, Fu H, Zhou D, Chen J.
    J Environ Sci (China); 2018 Sep 15; 71():233-248. PubMed ID: 30195682
    [Abstract] [Full Text] [Related]

  • 36. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity.
    Sun J, Shen Z, Wang R, Li G, Zhang Y, Zhang B, He K, Tang Z, Xu H, Qu L, Sai Hang Ho S, Liu S, Cao J.
    Environ Int; 2021 Jan 15; 146():106279. PubMed ID: 33276317
    [Abstract] [Full Text] [Related]

  • 37. Characteristics and source apportionment of ambient volatile organic compounds and ozone generation sensitivity in urban Jiaozuo, China.
    Li P, Chen C, Liu D, Lian J, Li W, Fan C, Yan L, Gao Y, Wang M, Liu H, Pan X, Mao J.
    J Environ Sci (China); 2024 Apr 15; 138():607-625. PubMed ID: 38135424
    [Abstract] [Full Text] [Related]

  • 38. Abundant oxygenated volatile organic compounds and their contribution to photochemical pollution in subtropical Hong Kong.
    Hui L, Feng X, Yuan Q, Chen Y, Xu Y, Zheng P, Lee S, Wang Z.
    Environ Pollut; 2023 Oct 15; 335():122287. PubMed ID: 37562529
    [Abstract] [Full Text] [Related]

  • 39. Source apportionment of volatile organic compounds during paddy-residue burning season in north-west India reveals large pool of photochemically formed air toxics.
    Singh R, Sinha B, Hakkim H, Sinha V.
    Environ Pollut; 2023 Dec 01; 338():122656. PubMed ID: 37793541
    [Abstract] [Full Text] [Related]

  • 40. Long-term contributions of VOC sources and their link to ozone pollution in Bronx, New York City.
    Borlaza-Lacoste L, Aynul Bari M, Lu CH, Hopke PK.
    Environ Int; 2024 Sep 01; 191():108993. PubMed ID: 39278045
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.