These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 37738111
1. Creating Order in Ultrastable Phosphonate Metal-Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. Huynh RPS, Evans DR, Lian JX, Spasyuk D, Siahrostrami S, Shimizu GKH. J Am Chem Soc; 2023 Oct 04; 145(39):21263-21272. PubMed ID: 37738111 [Abstract] [Full Text] [Related]
2. Microporous Metal-Phosphonates with a Novel Orthogonalized Linker and Complementary Guests: Insights for Trivalent Metal Complexes from Divalent Metal Complexes. Glavinović M, Perras JH, Gelfand BS, Lin JB, Spasyuk DM, Zhou W, Shimizu GKH. Chemistry; 2023 Mar 22; 29(17):e202203835. PubMed ID: 36581566 [Abstract] [Full Text] [Related]
5. Orthogonalization of Polyaryl Linkers as a Route to More Porous Phosphonate Metal-Organic Frameworks. Glavinović M, Perras JH, Gelfand BS, Lin JB, Shimizu GKH. Chemistry; 2022 Jun 01; 28(31):e202200874. PubMed ID: 35349770 [Abstract] [Full Text] [Related]
6. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications. Chen Z, Kirlikovali KO, Li P, Farha OK. Acc Chem Res; 2022 Feb 15; 55(4):579-591. PubMed ID: 35112832 [Abstract] [Full Text] [Related]
8. Highly stable 3D porous HMOF with enhanced catalysis and fine color regulation by the combination of d- and p-ions when compared with those of its monometallic MOFs. Liu J, Zhao Y, Dang LL, Yang G, Ma LF, Li DS, Wang Y. Chem Commun (Camb); 2020 Aug 11; 56(62):8758-8761. PubMed ID: 32618296 [Abstract] [Full Text] [Related]
9. Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks. Iremonger SS, Liang J, Vaidhyanathan R, Martens I, Shimizu GK, Daff TD, Aghaji MZ, Yeganegi S, Woo TK. J Am Chem Soc; 2011 Dec 21; 133(50):20048-51. PubMed ID: 22092059 [Abstract] [Full Text] [Related]
12. [Application of gas chromatography separation based on metal-organic framework material as stationary phase]. Tang W, Meng S, Xu M, Gu Z. Se Pu; 2021 Jan 21; 39(1):57-68. PubMed ID: 34227359 [Abstract] [Full Text] [Related]
14. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S. Nat Commun; 2017 May 30; 8():15369. PubMed ID: 28555656 [Abstract] [Full Text] [Related]
15. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Kung CW, Goswami S, Hod I, Wang TC, Duan J, Farha OK, Hupp JT. Acc Chem Res; 2020 Jun 16; 53(6):1187-1195. PubMed ID: 32401008 [Abstract] [Full Text] [Related]
16. Mediating Order and Modulating Porosity by Controlled Hydrolysis in a Phosphonate Monoester Metal-Organic Framework. Gelfand BS, Huynh RP, Mah RK, Shimizu GK. Angew Chem Int Ed Engl; 2016 Nov 14; 55(47):14614-14617. PubMed ID: 27766722 [Abstract] [Full Text] [Related]
17. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks. Yang D, Gates BC. Acc Chem Res; 2021 Apr 20; 54(8):1982-1991. PubMed ID: 33843190 [Abstract] [Full Text] [Related]