These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 37747644
21. A new deep learning framework based on blood pressure range constraint for continuous cuffless BP estimation. Chen Y, Zhang D, Karimi HR, Deng C, Yin W. Neural Netw; 2022 Aug; 152():181-190. PubMed ID: 35533504 [Abstract] [Full Text] [Related]
22. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Zhang Q, Zhou D, Zeng X. Biomed Eng Online; 2017 Feb 06; 16(1):23. PubMed ID: 28166774 [Abstract] [Full Text] [Related]
23. Estimating blood pressure trends and the nocturnal dip from photoplethysmography. Radha M, de Groot K, Rajani N, Wong CCP, Kobold N, Vos V, Fonseca P, Mastellos N, Wark PA, Velthoven N, Haakma R, Aarts RM. Physiol Meas; 2019 Feb 26; 40(2):025006. PubMed ID: 30699397 [Abstract] [Full Text] [Related]
24. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Kamanditya B, Fuadah YN, Mahardika T NQ, Lim KM. Sci Rep; 2024 Jul 16; 14(1):16450. PubMed ID: 39014018 [Abstract] [Full Text] [Related]
25. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj, Kumar A, Komaragiri R, Kumar M. Comput Biol Med; 2022 Feb 16; 141():105081. PubMed ID: 34952340 [Abstract] [Full Text] [Related]
26. A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography. Zhang Y, Ren X, Liang X, Ye X, Zhou C. IEEE J Biomed Health Inform; 2022 Dec 16; 26(12):5907-5917. PubMed ID: 36103444 [Abstract] [Full Text] [Related]
27. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only. Hsu YC, Li YH, Chang CC, Harfiya LN. Sensors (Basel); 2020 Oct 04; 20(19):. PubMed ID: 33020401 [Abstract] [Full Text] [Related]
28. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative. Sarkar S, Ghosh A. Comput Biol Med; 2023 Nov 04; 166():107558. PubMed ID: 37806054 [Abstract] [Full Text] [Related]
29. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography. Ma C, Zhang P, Song F, Sun Y, Fan G, Zhang T, Feng Y, Zhang G. IEEE J Biomed Health Inform; 2023 May 04; 27(5):2219-2230. PubMed ID: 35700247 [Abstract] [Full Text] [Related]
30. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Athaya T, Choi S. Sensors (Basel); 2021 Mar 07; 21(5):. PubMed ID: 33800106 [Abstract] [Full Text] [Related]
31. A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting. Mieloszyk R, Twede H, Lester J, Wander J, Basu S, Cohn G, Smith G, Morris D, Gupta S, Tan D, Villar N, Wolf M, Malladi S, Mickelson M, Ryan L, Kim L, Kepple J, Kirchner S, Wampler E, Terada R, Robinson J, Paulsen R, Saponas TS. IEEE J Biomed Health Inform; 2022 Jul 07; 26(7):2864-2875. PubMed ID: 35201992 [Abstract] [Full Text] [Related]
32. Estimating Systolic Blood Pressure Using Convolutional Neural Networks. Rastegar S, Gholamhosseini H, Lowe A, Mehdipour F, Lindén M. Stud Health Technol Inform; 2019 Jul 07; 261():143-149. PubMed ID: 31156106 [Abstract] [Full Text] [Related]
33. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks. Wang W, Mohseni P, Kilgore K, Najafizadeh L. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 07; 2021():1031-1034. PubMed ID: 34891464 [Abstract] [Full Text] [Related]
34. BiGRU-attention for Continuous blood pressure trends estimation through single channel PPG. Liu Z, Zhang Y, Zhou C. Comput Biol Med; 2024 Jan 07; 168():107795. PubMed ID: 38056206 [Abstract] [Full Text] [Related]
35. Deep-learning-based blood pressure estimation using multi channel photoplethysmogram and finger pressure with attention mechanism. Kyung J, Yang JY, Choi JH, Chang JH, Bae S, Choi J, Kim Y. Sci Rep; 2023 Jun 08; 13(1):9311. PubMed ID: 37291140 [Abstract] [Full Text] [Related]
37. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Jeong DU, Lim KM. Sci Rep; 2021 Jun 29; 11(1):13539. PubMed ID: 34188132 [Abstract] [Full Text] [Related]
38. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals. Mahmud S, Ibtehaz N, Khandakar A, Tahir AM, Rahman T, Islam KR, Hossain MS, Rahman MS, Musharavati F, Ayari MA, Islam MT, Chowdhury MEH. Sensors (Basel); 2022 Jan 25; 22(3):. PubMed ID: 35161664 [Abstract] [Full Text] [Related]
39. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation. Zhou Y, Tan Z, Liu Y, Cheng H. Physiol Meas; 2023 Sep 01; 44(7):. PubMed ID: 37402386 [Abstract] [Full Text] [Related]
40. Blood pressure monitoring during anesthesia induction using PPG morphology features and machine learning. Aguet C, Jorge J, Van Zaen J, Proença M, Bonnier G, Frossard P, Lemay M. PLoS One; 2023 Sep 01; 18(2):e0279419. PubMed ID: 36735652 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]