These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP, Moreno-Betancur M, De Livera AM, Lee KJ, Simpson JA. BMC Med Res Methodol; 2019 Jan 10; 19(1):14. PubMed ID: 30630434 [Abstract] [Full Text] [Related]
3. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study. Floden L, Bell ML. BMC Med Res Methodol; 2019 Jul 23; 19(1):161. PubMed ID: 31345166 [Abstract] [Full Text] [Related]
4. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study. Lee KJ, Galati JC, Simpson JA, Carlin JB. Stat Med; 2012 Dec 30; 31(30):4164-74. PubMed ID: 22826110 [Abstract] [Full Text] [Related]
10. Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable. Grobler AC, Lee K. Biom J; 2020 Mar 30; 62(2):467-478. PubMed ID: 31304611 [Abstract] [Full Text] [Related]
12. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR, Lee KJ, Ryan P, Salter AB. BMC Med Res Methodol; 2017 Sep 06; 17(1):134. PubMed ID: 28877666 [Abstract] [Full Text] [Related]
13. Tuning multiple imputation by predictive mean matching and local residual draws. Morris TP, White IR, Royston P. BMC Med Res Methodol; 2014 Jun 05; 14():75. PubMed ID: 24903709 [Abstract] [Full Text] [Related]
14. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J, Akhtar-Danesh N, Dolovich L, Thabane L, CHAT investigators. BMC Med Res Methodol; 2011 Feb 16; 11():18. PubMed ID: 21324148 [Abstract] [Full Text] [Related]
16. A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables. Wu W, Jia F, Enders C. Multivariate Behav Res; 2015 Feb 16; 50(5):484-503. PubMed ID: 26610248 [Abstract] [Full Text] [Related]
17. Solving the many-variables problem in MICE with principal component regression. Costantini E, Lang KM, Sijtsma K, Reeskens T. Behav Res Methods; 2024 Mar 16; 56(3):1715-1737. PubMed ID: 37540467 [Abstract] [Full Text] [Related]
18. A fair comparison of tree-based and parametric methods in multiple imputation by chained equations. Slade E, Naylor MG. Stat Med; 2020 Apr 15; 39(8):1156-1166. PubMed ID: 31997388 [Abstract] [Full Text] [Related]
19. Multiple imputation in the presence of non-normal data. Lee KJ, Carlin JB. Stat Med; 2017 Feb 20; 36(4):606-617. PubMed ID: 27862164 [Abstract] [Full Text] [Related]
20. Multiple imputation for non-response when estimating HIV prevalence using survey data. Chinomona A, Mwambi H. BMC Public Health; 2015 Oct 16; 15():1059. PubMed ID: 26475303 [Abstract] [Full Text] [Related] Page: [Next] [New Search]