These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 37764292

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation.
    Rocky-Salimi K, Hashemi M, Safari M, Mousivand M.
    J Sci Food Agric; 2017 Jan; 97(1):222-229. PubMed ID: 26991843
    [Abstract] [Full Text] [Related]

  • 4. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W, Wang R, Xiao D.
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2.
    Liu Z, Wu Y, Zhang L, Tong S, Jin J, Gong X, Zhong J.
    BMC Biotechnol; 2022 Jul 04; 22(1):18. PubMed ID: 35787694
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach.
    Zhu BF, Xu Y, Fan WL.
    J Ind Microbiol Biotechnol; 2010 Feb 04; 37(2):179-86. PubMed ID: 19904566
    [Abstract] [Full Text] [Related]

  • 10. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy.
    Zhu BF, Xu Y.
    J Ind Microbiol Biotechnol; 2010 Aug 04; 37(8):815-21. PubMed ID: 20437078
    [Abstract] [Full Text] [Related]

  • 11. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate.
    Xiao ZJ, Liu PH, Qin JY, Xu P.
    Appl Microbiol Biotechnol; 2007 Feb 04; 74(1):61-8. PubMed ID: 17043817
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution.
    Liang S, Jiang W, Song Y, Zhou SF.
    J Agric Food Chem; 2020 Jul 22; 68(29):7660-7669. PubMed ID: 32603099
    [Abstract] [Full Text] [Related]

  • 16. Acetic Acid Fermentation of Soybean Molasses and Characterisation of the Produced Vinegar.
    Miranda LCR, Gomes RJ, Mandarino JMG, Ida EI, Spinosa WA.
    Food Technol Biotechnol; 2020 Mar 22; 58(1):84-90. PubMed ID: 32684792
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [Improving ergosterol production from molasses by Saccharomyces cerevisiae].
    Wang S, Guo X, He X, Zhang B.
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov 22; 29(11):1676-80. PubMed ID: 24701833
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.