These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 37765769
1. Using Deep Learning Models to Predict Prosthetic Ankle Torque. Prasanna C, Realmuto J, Anderson A, Rombokas E, Klute G. Sensors (Basel); 2023 Sep 06; 23(18):. PubMed ID: 37765769 [Abstract] [Full Text] [Related]
2. A Neural Network Estimation of Ankle Torques From Electromyography and Accelerometry. Siu HC, Sloboda J, McKindles RJ, Stirling LA. IEEE Trans Neural Syst Rehabil Eng; 2021 Sep 06; 29():1624-1633. PubMed ID: 34388093 [Abstract] [Full Text] [Related]
3. Paired nonlinear behavior of active and passive joint torques associated with preparation for walk-to-run gait transition. Pan J, Zhang S, Li L. J Electromyogr Kinesiol; 2021 Apr 06; 57():102527. PubMed ID: 33530026 [Abstract] [Full Text] [Related]
4. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study. Lam SK, Vujaklija I. Sensors (Basel); 2021 Oct 02; 21(19):. PubMed ID: 34640917 [Abstract] [Full Text] [Related]
11. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders. Kolaghassi R, Al-Hares MK, Marcelli G, Sirlantzis K. Sensors (Basel); 2022 Apr 13; 22(8):. PubMed ID: 35458954 [Abstract] [Full Text] [Related]
12. Ankle torque forecasting using time-delayed neural networks. Zarshenas H, Ruddy BP, Kempa-Liehr AW, Besier TF. Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 13; 2020():4854-4857. PubMed ID: 33019077 [Abstract] [Full Text] [Related]
13. The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions. Sharifi Renani M, Eustace AM, Myers CA, Clary CW. Sensors (Basel); 2021 Aug 31; 21(17):. PubMed ID: 34502766 [Abstract] [Full Text] [Related]
14. Whole Body Center of Mass Feedback in a Reflex-Based Neuromuscular Model Predicts Ankle Strategy During Perturbed Walking. Keemink AQL, Brug TJH, van Asseldonk EHF, Wu AR, van der Kooij H. IEEE Trans Neural Syst Rehabil Eng; 2021 Aug 31; 29():2521-2529. PubMed ID: 34847033 [Abstract] [Full Text] [Related]
15. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Jiang X, Gholami M, Khoshnam M, Eng JJ, Menon C. Sensors (Basel); 2019 Jun 21; 19(12):. PubMed ID: 31234451 [Abstract] [Full Text] [Related]
16. Accurate Real-Time Joint Torque Estimation for Dynamic Prediction of Human Locomotion. Dinovitzer H, Shushtari M, Arami A. IEEE Trans Biomed Eng; 2023 Aug 21; 70(8):2289-2297. PubMed ID: 37022250 [Abstract] [Full Text] [Related]
17. Obesity is not associated with increased knee joint torque and power during level walking. DeVita P, Hortobágyi T. J Biomech; 2003 Sep 21; 36(9):1355-62. PubMed ID: 12893044 [Abstract] [Full Text] [Related]
18. Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication. Koutakis P, Pipinos II, Myers SA, Stergiou N, Lynch TG, Johanning JM. J Vasc Surg; 2010 Jan 21; 51(1):80-8. PubMed ID: 19837536 [Abstract] [Full Text] [Related]
19. Control of interjoint coordination during the swing phase of normal gait at different speeds. Shemmell J, Johansson J, Portra V, Gottlieb GL, Thomas JS, Corcos DM. J Neuroeng Rehabil; 2007 Apr 27; 4():10. PubMed ID: 17466065 [Abstract] [Full Text] [Related]
20. Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques. Kaya E, Argunsah H. Comput Methods Biomech Biomed Engin; 2024 Sep 05; ():1-11. PubMed ID: 39235388 [Abstract] [Full Text] [Related] Page: [Next] [New Search]