These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 37784259
1. Top-down versus bottom-up: Grazing and upwelling regime alter patterns of primary productivity in a warm-temperate system. Gilson AR, McQuaid C. Ecology; 2023 Dec; 104(12):e4180. PubMed ID: 37784259 [Abstract] [Full Text] [Related]
5. Declines in predatory fish promote bloom-forming macroalgae. Eriksson BK, Ljunggren L, Sandström A, Johansson G, Mattila J, Rubach A, Råberg S, Snickars M. Ecol Appl; 2009 Dec; 19(8):1975-88. PubMed ID: 20014572 [Abstract] [Full Text] [Related]
6. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Burkepile DE, Hay ME. Ecology; 2006 Dec; 87(12):3128-39. PubMed ID: 17249237 [Abstract] [Full Text] [Related]
7. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Hacker SD, Menge BA, Nielsen KJ, Chan F, Gouhier TC. Ecology; 2019 Aug; 100(8):e02763. PubMed ID: 31127616 [Abstract] [Full Text] [Related]
8. The effect of grazing and nutrient supply on periphyton associated bacteria. Haglund AL, Hillebrand H. FEMS Microbiol Ecol; 2005 Mar 01; 52(1):31-41. PubMed ID: 16329890 [Abstract] [Full Text] [Related]
9. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment. Jäger CG, Hagemann J, Borchardt D. Water Res; 2017 May 15; 115():162-171. PubMed ID: 28279937 [Abstract] [Full Text] [Related]
10. The influence of coastal upwelling on the functional structure of rocky intertidal communities. Bosman AL, Hockey PA, Siegfried WR. Oecologia; 1987 May 15; 72(2):226-232. PubMed ID: 28311545 [Abstract] [Full Text] [Related]
11. Effects of nutrients, herbivory, and depth on the macroalgal community in the rocky sublittoral. Korpinen S, Jormalainen V, Honkanen T. Ecology; 2007 Apr 15; 88(4):839-52. PubMed ID: 17536701 [Abstract] [Full Text] [Related]
12. Temperature effects on seaweed-sustaining top-down control vary with season. Werner FJ, Graiff A, Matthiessen B. Oecologia; 2016 Mar 15; 180(3):889-901. PubMed ID: 26566809 [Abstract] [Full Text] [Related]
13. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Gusha MNC, Dalu T, Wasserman RJ, McQuaid CD. Sci Total Environ; 2019 Feb 15; 651(Pt 1):410-418. PubMed ID: 30240923 [Abstract] [Full Text] [Related]
17. Benthic-pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT. Proc Natl Acad Sci U S A; 1997 Dec 23; 94(26):14530-5. PubMed ID: 9405647 [Abstract] [Full Text] [Related]
18. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream. Chiu MC, Kuo MH, Chang HY, Lin HJ. Microb Ecol; 2016 Aug 23; 72(2):372-80. PubMed ID: 27273089 [Abstract] [Full Text] [Related]
19. Upwelling enhances seaweed nutrient quality, altering feeding behavior and growth rates in an intertidal sea urchin, Loxechinus albus. Pulgar J, Moya A, Fernández M, Varas O, Guzmán-Rivas F, Urzúa Á, Quijón PA, García-Huidobro MR, Aldana M, Duarte C. Sci Total Environ; 2022 Dec 10; 851(Pt 2):158307. PubMed ID: 36055497 [Abstract] [Full Text] [Related]