These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 3778899
1. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Wheeler TJ. Biochim Biophys Acta; 1986 Nov 17; 862(2):387-98. PubMed ID: 3778899 [Abstract] [Full Text] [Related]
2. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport. Wheeler TJ, Whelan JD. Biochemistry; 1988 Mar 08; 27(5):1441-50. PubMed ID: 3365399 [Abstract] [Full Text] [Related]
3. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Whitesell RR, Regen DM, Beth AH, Pelletier DK, Abumrad NA. Biochemistry; 1989 Jun 27; 28(13):5618-25. PubMed ID: 2775725 [Abstract] [Full Text] [Related]
4. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model. Naftalin RJ, Rist RJ. Biochim Biophys Acta; 1994 Apr 20; 1191(1):65-78. PubMed ID: 8155685 [Abstract] [Full Text] [Related]
5. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation. Plagemann PG, Wohlhueter RM. Biochim Biophys Acta; 1984 Nov 21; 778(1):176-84. PubMed ID: 6498185 [Abstract] [Full Text] [Related]
6. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate. Carruthers A. Biochemistry; 1986 Jun 17; 25(12):3592-602. PubMed ID: 3718945 [Abstract] [Full Text] [Related]
7. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H. Biochim Biophys Acta; 1978 Jan 04; 506(1):119-35. PubMed ID: 620020 [Abstract] [Full Text] [Related]
8. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Baker GF, Naftalin RJ. Biochim Biophys Acta; 1979 Feb 02; 550(3):474-84. PubMed ID: 420829 [Abstract] [Full Text] [Related]
9. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A. Biochemistry; 1995 Nov 28; 34(47):15395-406. PubMed ID: 7492539 [Abstract] [Full Text] [Related]
10. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Craik JD, Young JD, Cheeseman CI. Am J Physiol; 1998 Jan 28; 274(1):R112-9. PubMed ID: 9458906 [Abstract] [Full Text] [Related]
11. The human erythrocyte ghost: a new experimental model for studying adenosine transport. Fernandez-Rivera-Rio L, Gonzalez-Garcia MR. Arch Biochem Biophys; 1985 Jul 28; 240(1):246-56. PubMed ID: 4015103 [Abstract] [Full Text] [Related]
12. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer. Carruthers A, Melchior DL. Biochim Biophys Acta; 1983 Feb 28; 728(2):254-66. PubMed ID: 6681982 [Abstract] [Full Text] [Related]
13. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism. Naftalin RJ. Biochim Biophys Acta; 1988 Dec 22; 946(2):431-8. PubMed ID: 3207758 [Abstract] [Full Text] [Related]
14. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. Wheeler TJ, Hinkle PC. J Biol Chem; 1981 Sep 10; 256(17):8907-14. PubMed ID: 6455434 [Abstract] [Full Text] [Related]
15. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Ginsburg H, Ram D. Biochim Biophys Acta; 1975 Mar 25; 382(3):369-76. PubMed ID: 1125239 [Abstract] [Full Text] [Related]
16. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. Krupka RM. J Membr Biol; 1985 Mar 25; 83(1-2):71-80. PubMed ID: 4039758 [Abstract] [Full Text] [Related]
17. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes. Dustin ML, Jacobson GR, Peterson SW. J Biol Chem; 1984 Nov 25; 259(22):13660-3. PubMed ID: 6389533 [Abstract] [Full Text] [Related]
18. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R. J Membr Biol; 1981 Nov 25; 62(1-2):79-93. PubMed ID: 7277478 [Abstract] [Full Text] [Related]
19. A kinetic analysis of L-tryptophan transport in human red blood cells. Rosenberg R. Biochim Biophys Acta; 1981 Dec 07; 649(2):262-8. PubMed ID: 7317397 [Abstract] [Full Text] [Related]
20. Immunological evidence that band 3 is the major glucose transporter of the human erythrocyte membrane. Langdon RG, Holman VP. Biochim Biophys Acta; 1988 Nov 03; 945(1):23-32. PubMed ID: 3179308 [Abstract] [Full Text] [Related] Page: [Next] [New Search]