These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 37791097
1. Efficient Exploration of Adsorption Space for Separations in Metal-Organic Frameworks Combining the Use of Molecular Simulations, Machine Learning, and Ideal Adsorbed Solution Theory. Yu X, Tang D, Chng JY, Sholl DS. J Phys Chem C Nanomater Interfaces; 2023 Sep 28; 127(38):19229-19239. PubMed ID: 37791097 [Abstract] [Full Text] [Related]
2. Adsorption-Based Separation of Near-Azeotropic Mixtures-A Challenging Example for High-Throughput Development of Adsorbents. Tang D, Gharagheizi F, Sholl DS. J Phys Chem B; 2021 Jan 28; 125(3):926-936. PubMed ID: 33448857 [Abstract] [Full Text] [Related]
3. Modeling adsorption in metal-organic frameworks with open metal sites: propane/propylene separations. Fischer M, Gomes JR, Fröba M, Jorge M. Langmuir; 2012 Jun 05; 28(22):8537-49. PubMed ID: 22574969 [Abstract] [Full Text] [Related]
5. Acetylene Storage and Separation Using Metal-Organic Frameworks with Open Metal Sites. Luna-Triguero A, Vicent-Luna JM, Madero-Castro RM, Gómez-Álvarez P, Calero S. ACS Appl Mater Interfaces; 2019 Aug 28; 11(34):31499-31507. PubMed ID: 31368697 [Abstract] [Full Text] [Related]
6. Machine learning potential for modelling H2 adsorption/diffusion in MOFs with open metal sites. Liu S, Dupuis R, Fan D, Benzaria S, Bonneau M, Bhatt P, Eddaoudi M, Maurin G. Chem Sci; 2024 Apr 03; 15(14):5294-5302. PubMed ID: 38577379 [Abstract] [Full Text] [Related]
8. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC. Keskin S, Liu J, Johnson JK, Sholl DS. Langmuir; 2008 Aug 05; 24(15):8254-61. PubMed ID: 18613712 [Abstract] [Full Text] [Related]
9. Efficiently Exploring Adsorption Space to Identify Privileged Adsorbents for Chemical Separations of a Diverse Set of Molecules. Tang D, Wu Y, Verploegh RJ, Sholl DS. ChemSusChem; 2018 May 09; 11(9):1567-1575. PubMed ID: 29624911 [Abstract] [Full Text] [Related]
10. Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. Anderson R, Biong A, Gómez-Gualdrón DA. J Chem Theory Comput; 2020 Feb 11; 16(2):1271-1283. PubMed ID: 31922755 [Abstract] [Full Text] [Related]
16. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption. Singh SK, Sose AT, Wang F, Bejagam KK, Deshmukh SA. J Chem Theory Comput; 2023 Oct 10; 19(19):6686-6703. PubMed ID: 37756641 [Abstract] [Full Text] [Related]
17. Machine Learning Models for Predicting Molecular Diffusion in Metal-Organic Frameworks Accounting for the Impact of Framework Flexibility. Yang Y, Yu Z, Sholl DS. Chem Mater; 2023 Dec 12; 35(23):10156-10168. PubMed ID: 38107189 [Abstract] [Full Text] [Related]
18. XGBoost: An Optimal Machine Learning Model with Just Structural Features to Discover MOF Adsorbents of Xe/Kr. Liang H, Jiang K, Yan TA, Chen GH. ACS Omega; 2021 Apr 06; 6(13):9066-9076. PubMed ID: 33842776 [Abstract] [Full Text] [Related]
19. Accelerated screening and assembly of promising MOFs with open Cu sites for isobutene/isobutane separation using a data-driven approach. Sun X, Lin W, Jiang K, Liang H, Chen G. Phys Chem Chem Phys; 2023 Mar 22; 25(12):8608-8623. PubMed ID: 36891889 [Abstract] [Full Text] [Related]
20. Evaluating CH4/N2 Separation Performances of Hundreds of Thousands of Real and Hypothetical MOFs by Harnessing Molecular Modeling and Machine Learning. Gulbalkan HC, Uzun A, Keskin S. ACS Appl Mater Interfaces; 2023 Dec 11. PubMed ID: 38082488 [Abstract] [Full Text] [Related] Page: [Next] [New Search]