These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 37791341
1. Analysis of D-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha. Horie M, Ohmiya Y, Ohmori T. Biosci Microbiota Food Health; 2023; 42(4):254-263. PubMed ID: 37791341 [Abstract] [Full Text] [Related]
2. Regional characteristics of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha. Horie M, Sato H, Tada A, Nakamura S, Sugino S, Tabei Y, Katoh M, Toyotome T. Biosci Microbiota Food Health; 2019; 38(1):11-22. PubMed ID: 30705798 [Abstract] [Full Text] [Related]
3. Controlling the microbial composition during the fermentation of Ishizuchi-kurocha. Li Z, Jiang L, Wei L, Ohno T, Syaputri Y, Horie M, Iwahashi H. Biosci Biotechnol Biochem; 2021 Dec 22; 86(1):117-124. PubMed ID: 34669923 [Abstract] [Full Text] [Related]
4. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Horie M, Nara K, Sugino S, Umeno A, Yoshida Y. Food Sci Nutr; 2017 May 22; 5(3):639-645. PubMed ID: 28572952 [Abstract] [Full Text] [Related]
5. Genome Sequencing Unveils Nomadic Traits of Lactiplantibacillus plantarum in Japanese Post-Fermented Tea. Sato K, Ikagawa Y, Niwa R, Nishioka H, Horie M, Iwahashi H. Curr Microbiol; 2023 Dec 28; 81(1):52. PubMed ID: 38155273 [Abstract] [Full Text] [Related]
6. Culture-based analysis of fungi in leaves after the primary and secondary fermentation processes during Ishizuchi-kurocha production and lactate assimilation of P. kudriavzevii. Yamamoto M, Horie M, Fukushima M, Toyotome T. Int J Food Microbiol; 2019 Oct 02; 306():108263. PubMed ID: 31306941 [Abstract] [Full Text] [Related]
7. Draft Genome Sequence of the Yeast Pichia manshurica YM63, a Participant in Secondary Fermentation of Ishizuchi-Kurocha, a Japanese Fermented Tea. Toyotome T, Yamamoto M, Horie M. Microbiol Resour Announc; 2019 Jul 03; 8(27):. PubMed ID: 31270197 [Abstract] [Full Text] [Related]
8. Draft Genome Sequence of Lactobacillus plantarum IYO1511, Isolated from Ishizuchi-Kurocha. Niwa R, Syaputri Y, Horie M, Iwahashi H. Microbiol Resour Announc; 2020 Apr 30; 9(18):. PubMed ID: 32354970 [Abstract] [Full Text] [Related]
9. Flavor production in fermented chayote inoculated with lactic acid bacteria strains: Genomics and metabolomics based analysis. Zhang S, Shang Z, Liu Z, Hu X, Yi J. Food Res Int; 2023 Jan 30; 163():112224. PubMed ID: 36596153 [Abstract] [Full Text] [Related]
10. Assaying D-Amino Acid in Japanese Sake Using L-Amino Acid Derivatizing Agent. Kato H, Kanauchi M. Methods Mol Biol; 2024 Jan 30; 2851():125-131. PubMed ID: 39210177 [Abstract] [Full Text] [Related]
11. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. Abouloifa H, Khodaei N, Rokni Y, Karboune S, Brasca M, D'Hallewin G, Salah RB, Saalaoui E, Asehraou A. World J Microbiol Biotechnol; 2020 Nov 20; 36(12):185. PubMed ID: 33215291 [Abstract] [Full Text] [Related]
12. Identification of a novel d-amino acid aminotransferase involved in d-glutamate biosynthetic pathways in the hyperthermophile Thermotoga maritima. Miyamoto T, Moriya T, Katane M, Saitoh Y, Sekine M, Sakai-Kato K, Oshima T, Homma H. FEBS J; 2022 Oct 20; 289(19):5933-5946. PubMed ID: 35377552 [Abstract] [Full Text] [Related]
13. Diversity of Lactic Acid Bacteria Involved in the Fermentation of Awa-bancha. Nishioka H, Ohno T, Iwahashi H, Horie M. Microbes Environ; 2021 Oct 20; 36(4):. PubMed ID: 34840198 [Abstract] [Full Text] [Related]
14. The impact of Levilactobacillus brevis YSJ3 and Lactiplantibacillus plantarum JLSC2-6 co-culture on gamma-aminobutyric acid yield, volatile and non-volatile metabolites, antioxidant activity, and bacterial community in fermented cauliflower byproducts. Zhang J, Liu D, Zhang C, Niu H, Xin X, Chen J, Yi H, Liu D. Food Chem; 2024 Jan 30; 432():137169. PubMed ID: 37625302 [Abstract] [Full Text] [Related]
15. Characterization and potential oral probiotic properties of Lactobacillus plantarum FT 12 and Lactobacillus brevis FT 6 isolated from Malaysian fermented food. Mohd-Zubri NS, Ramasamy K, Abdul-Rahman NZ. Arch Oral Biol; 2022 Nov 30; 143():105515. PubMed ID: 36084351 [Abstract] [Full Text] [Related]
16. Oral colonization by Levilactobacillus brevis KABPTM-052 and Lactiplantibacillus plantarum KABPTM-051: A Randomized, Double-Blinded, Placebo-Controlled Trial (Pilot Study). Nart J, Jiménez-Garrido S, Ramírez-Sebastià A, Astó E, Buj D, Huedo P, Espadaler J. J Clin Exp Dent; 2021 May 30; 13(5):e433-e439. PubMed ID: 33981389 [Abstract] [Full Text] [Related]
17. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Zhang Y, Vadlani PV. J Biosci Bioeng; 2015 Jun 30; 119(6):694-9. PubMed ID: 25561329 [Abstract] [Full Text] [Related]
18. Effect of Autochthonous Lactic Acid Bacteria-Enhanced Fermentation on the Quality of Suancai. Cao X, Zhao M, Zou S, Li Z, Wu Y, Ji C, Chen Y, Dong L, Zhang S, Liang H. Foods; 2022 Oct 22; 11(21):. PubMed ID: 36359923 [Abstract] [Full Text] [Related]
19. Development of bacteria identification array to detect lactobacilli in Thai fermented sausage. Rungrassamee W, Tosukhowong A, Klanchui A, Maibunkaew S, Plengvidhya V, Karoonuthaisiri N. J Microbiol Methods; 2012 Dec 22; 91(3):341-53. PubMed ID: 23022427 [Abstract] [Full Text] [Related]
20. Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis through simultaneous saccharification and co-fermentation process. Haokok C, Lunprom S, Reungsang A, Salakkam A. Heliyon; 2023 Jul 22; 9(7):e17935. PubMed ID: 37449189 [Abstract] [Full Text] [Related] Page: [Next] [New Search]