These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 37793541

  • 1. Source apportionment of volatile organic compounds during paddy-residue burning season in north-west India reveals large pool of photochemically formed air toxics.
    Singh R, Sinha B, Hakkim H, Sinha V.
    Environ Pollut; 2023 Dec 01; 338():122656. PubMed ID: 37793541
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Elucidating sources of VOCs in the Capital Region of New York State: Implications to secondary transformation and public health exposure.
    Paul S, Bari MA.
    Chemosphere; 2022 Jul 01; 299():134407. PubMed ID: 35341770
    [Abstract] [Full Text] [Related]

  • 6. Characterization of photochemical losses of volatile organic compounds and their implications for ozone formation potential and source apportionment during summer in suburban Jinan, China.
    Liu Z, Wang B, Wang C, Sun Y, Zhu C, Sun L, Yang N, Fan G, Sun X, Xia Z, Pan G, Zhu C, Gai Y, Wang X, Xiao Y, Yan G, Xu C.
    Environ Res; 2023 Dec 01; 238(Pt 1):117158. PubMed ID: 37726031
    [Abstract] [Full Text] [Related]

  • 7. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China.
    Liu Y, Song M, Liu X, Zhang Y, Hui L, Kong L, Zhang Y, Zhang C, Qu Y, An J, Ma D, Tan Q, Feng M.
    Environ Pollut; 2020 Feb 01; 257():113599. PubMed ID: 31796324
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. VOC source apportionment, reactivity, secondary transformations, and their prioritization using fuzzy-AHP method in a coal-mining city in India.
    Malik N, Singh V, Kumar K, Elumalai SP.
    Environ Sci Pollut Res Int; 2024 Apr 01; 31(17):25406-25423. PubMed ID: 38472578
    [Abstract] [Full Text] [Related]

  • 10. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality.
    Sun J, Shen Z, Zhang L, Zhang Y, Zhang T, Lei Y, Niu X, Zhang Q, Dang W, Han W, Cao J, Xu H, Liu P, Li X.
    Environ Int; 2019 Dec 01; 133(Pt B):105252. PubMed ID: 31678907
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China.
    Hui L, Ma T, Gao Z, Gao J, Wang Z, Xue L, Liu H, Liu J.
    Chemosphere; 2021 Feb 01; 265():129072. PubMed ID: 33302209
    [Abstract] [Full Text] [Related]

  • 13. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China.
    Wu W, Zhao B, Wang S, Hao J.
    J Environ Sci (China); 2017 Mar 01; 53():224-237. PubMed ID: 28372747
    [Abstract] [Full Text] [Related]

  • 14. Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation.
    Liu Q, Sheng J, Wu Y, Ma Z, Sun J, Tian P, Zhao D, Li X, Hu K, Li S, Shen X, Zhang Y, He H, Huang M, Ding D, Liu D.
    Sci Total Environ; 2023 Feb 20; 860():160469. PubMed ID: 36464057
    [Abstract] [Full Text] [Related]

  • 15. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China.
    Liu B, Liang D, Yang J, Dai Q, Bi X, Feng Y, Yuan J, Xiao Z, Zhang Y, Xu H.
    Environ Pollut; 2016 Nov 20; 218():757-769. PubMed ID: 27567166
    [Abstract] [Full Text] [Related]

  • 16. Formation potential and source contribution of secondary organic aerosol from volatile organic compounds.
    Jookjantra P, Thepanondh S, Keawboonchu J, Kultan V, Laowagul W.
    J Environ Qual; 2022 Sep 20; 51(5):1016-1034. PubMed ID: 35751911
    [Abstract] [Full Text] [Related]

  • 17. Characteristics and sources of ambient Volatile Organic Compounds (VOCs) at a regional background site, YRD region, China: Significant influence of solvent evaporation during hot months.
    Xu Z, Zou Q, Jin L, Shen Y, Shen J, Xu B, Qu F, Zhang F, Xu J, Pei X, Xie G, Kuang B, Huang X, Tian X, Wang Z.
    Sci Total Environ; 2023 Jan 20; 857(Pt 3):159674. PubMed ID: 36283529
    [Abstract] [Full Text] [Related]

  • 18. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season.
    Fan MY, Zhang YL, Lin YC, Li L, Xie F, Hu J, Mozaffar A, Cao F.
    Chemosphere; 2021 Jan 20; 263():128025. PubMed ID: 33297048
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.