These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 37797497
1. Confined amphipathic ionic-liquid regulated anodic aluminum oxide membranes with adjustable ion selectivity for improved osmotic energy conversion. Ma S, Hao J, Hou Y, Zhao J, Lin C, Sui X. J Colloid Interface Sci; 2024 Jan; 653(Pt B):1217-1224. PubMed ID: 37797497 [Abstract] [Full Text] [Related]
2. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Zhang Y, Wang H, Wang J, Li L, Sun H, Wang C. Chem Asian J; 2023 Dec 01; 18(23):e202300876. PubMed ID: 37886875 [Abstract] [Full Text] [Related]
3. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Xin W, Zhang Z, Huang X, Hu Y, Zhou T, Zhu C, Kong XY, Jiang L, Wen L. Nat Commun; 2019 Aug 28; 10(1):3876. PubMed ID: 31462636 [Abstract] [Full Text] [Related]
4. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. Zeng H, Yao C, Wu C, Wang D, Ma W, Wang J. Small; 2024 Jun 28; 20(26):e2310811. PubMed ID: 38299466 [Abstract] [Full Text] [Related]
5. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting. Lin C, Hao J, Zhao J, Hou Y, Ma S, Sui X. J Colloid Interface Sci; 2024 Jan 15; 654(Pt B):840-847. PubMed ID: 37898068 [Abstract] [Full Text] [Related]
6. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T, Li X, Lei W, Lu B, Liu Z, Zhai J. J Colloid Interface Sci; 2024 Nov 15; 673():365-372. PubMed ID: 38878371 [Abstract] [Full Text] [Related]
7. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR, Kwon C, Lee H, Kim S, Cho ES. ACS Nano; 2023 Jun 13; 17(11):10000-10009. PubMed ID: 37196224 [Abstract] [Full Text] [Related]
8. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. Geng Y, Zhang L, Li M, He Y, Lu B, He J, Li X, Zhou H, Fan X, Xiao T, Zhai J. Small; 2024 Jul 13; 20(28):e2309128. PubMed ID: 38308414 [Abstract] [Full Text] [Related]
9. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion. Ding L, Xiao D, Zhao Z, Wei Y, Xue J, Wang H. Adv Sci (Weinh); 2022 Sep 13; 9(25):e2202869. PubMed ID: 35780505 [Abstract] [Full Text] [Related]
10. Dual-Functional Super-Assembled Mesoporous Carbon-Titania/AAO Hetero-Channels for Bidirectionally Photo-Regulated Ion Transport. Zhou S, Zhang X, Xie L, He Y, Yan M, Liu T, Zeng H, Jiang L, Kong B. Small; 2023 Aug 13; 19(32):e2301038. PubMed ID: 37069771 [Abstract] [Full Text] [Related]
12. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion. Hu Y, Xiao H, Fu L, Liu P, Wu Y, Chen W, Qian Y, Zhou S, Kong XY, Zhang Z, Jiang L, Wen L. Adv Mater; 2023 Jun 16; 35(24):e2301285. PubMed ID: 36930971 [Abstract] [Full Text] [Related]
13. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. Zhou S, Xie L, Zhang L, Wen L, Tang J, Zeng J, Liu T, Peng D, Yan M, Qiu B, Liang Q, Liang K, Jiang L, Kong B. ACS Appl Mater Interfaces; 2021 Feb 24; 13(7):8782-8793. PubMed ID: 33560109 [Abstract] [Full Text] [Related]
14. In Situ Growth of MOF-303 Membranes onto Porous Anodic Aluminum Oxide Substrates for Harvesting Salinity-Gradient Energy. Pan B, Wang J, Yao C, Zhang S, Wu R, Zeng H, Wang D, Wu C. ACS Appl Mater Interfaces; 2023 Dec 27; 15(51):59463-59474. PubMed ID: 38099706 [Abstract] [Full Text] [Related]
15. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Zhang X, Huang H, Chen S, Xu Y, Xu F. Int J Biol Macromol; 2024 Feb 27; 258(Pt 2):128984. PubMed ID: 38151089 [Abstract] [Full Text] [Related]
16. Ionic Current Rectification of Porous Anodic Aluminum Oxide (AAO) with a Barrier Oxide Layer. Kim YD, Choi S, Kim A, Lee W. ACS Nano; 2020 Oct 27; 14(10):13727-13738. PubMed ID: 32930570 [Abstract] [Full Text] [Related]
17. Anion-Selective Layered Double Hydroxide Composites-Based Osmotic Energy Conversion for Real-Time Nutrient Solution Detection. Liu Y, Ping J, Ying Y. Adv Sci (Weinh); 2022 Feb 27; 9(6):e2103696. PubMed ID: 34989168 [Abstract] [Full Text] [Related]
18. Interfacial Super-Assembly of T-Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. Zhang L, Zhou S, Xie L, Wen L, Tang J, Liang K, Kong X, Zeng J, Zhang R, Liu J, Qiu B, Jiang L, Kong B. Small; 2021 Apr 27; 17(13):e2100141. PubMed ID: 33690995 [Abstract] [Full Text] [Related]
19. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting. Yao B, Hussain S, Ye Z, Peng X. Small; 2023 May 27; 19(18):e2207559. PubMed ID: 36725315 [Abstract] [Full Text] [Related]
20. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ, Yeh LH, Peng YH, Chuang YP, Wu KC. Angew Chem Int Ed Engl; 2024 Aug 26; 63(35):e202408375. PubMed ID: 38847272 [Abstract] [Full Text] [Related] Page: [Next] [New Search]