These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes. Karin BR, Arellano S, Wang L, Walzer K, Pomerantz A, Vasquez JM, Chatla K, Sudmant PH, Bach BH, Smith LL, McGuire JA. BMC Genomics; 2023 May 02; 24(1):229. PubMed ID: 37131128 [Abstract] [Full Text] [Related]
45. INC-Seq: accurate single molecule reads using nanopore sequencing. Li C, Chng KR, Boey EJ, Ng AH, Wilm A, Nagarajan N. Gigascience; 2016 Aug 02; 5(1):34. PubMed ID: 27485345 [Abstract] [Full Text] [Related]
46. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, Pettersson OV, Ettema TJG. Environ Microbiol; 2019 Jul 02; 21(7):2485-2498. PubMed ID: 31012228 [Abstract] [Full Text] [Related]
47. A Sample-to-Report Solution for Taxonomic Identification of Cultured Bacteria in the Clinical Setting Based on Nanopore Sequencing. Neuenschwander SM, Terrazos Miani MA, Amlang H, Perroulaz C, Bittel P, Casanova C, Droz S, Flandrois JP, Leib SL, Suter-Riniker F, Ramette A. J Clin Microbiol; 2020 May 26; 58(6):. PubMed ID: 32229603 [Abstract] [Full Text] [Related]
48. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, Green RE, Vollmers C. Proc Natl Acad Sci U S A; 2018 Sep 25; 115(39):9726-9731. PubMed ID: 30201725 [Abstract] [Full Text] [Related]
49. 16S-FASAS: an integrated pipeline for synthetic full-length 16S rRNA gene sequencing data analysis. Zhang K, Lin R, Chang Y, Zhou Q, Zhang Z. PeerJ; 2022 Sep 25; 10():e14043. PubMed ID: 36172503 [Abstract] [Full Text] [Related]
51. Comparison Between Full-Length 16S rRNA Metabarcoding and Whole Metagenome Sequencing Suggests the Use of Either Is Suitable for Large-Scale Microbiome Studies. Rubiola S, Macori G, Civera T, Fanning S, Mitchell M, Chiesa F. Foodborne Pathog Dis; 2022 Jul 25; 19(7):495-504. PubMed ID: 35819265 [Abstract] [Full Text] [Related]
52. Enhanced phylogenetic insights into the microbiome of chronic rhinosinusitis through the novel application of long read 16S rRNA gene amplicon sequencing. Connell JT, Yeo K, Bouras G, Bassiouni A, Fenix K, Cooksley C, Vreugde S, Wormald PJ, Psaltis AJ. Rhinology; 2024 Apr 01; 62(2):152-162. PubMed ID: 38165666 [Abstract] [Full Text] [Related]
53. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Lang D, Zhang S, Ren P, Liang F, Sun Z, Meng G, Tan Y, Li X, Lai Q, Han L, Wang D, Hu F, Wang W, Liu S. Gigascience; 2020 Dec 15; 9(12):. PubMed ID: 33319909 [Abstract] [Full Text] [Related]
54. Nanopore Sequencing Provides Rapid and Reliable Insight Into Microbial Profiles of Intensive Care Units. de Siqueira GMV, Pereira-Dos-Santos FM, Silva-Rocha R, Guazzaroni ME. Front Public Health; 2021 Dec 15; 9():710985. PubMed ID: 34513786 [Abstract] [Full Text] [Related]
55. Primed and ready: nanopore metabarcoding can now recover highly accurate consensus barcodes that are generally indel-free. Chang JJM, Ip YCA, Neo WL, Mowe MAD, Jaafar Z, Huang D. BMC Genomics; 2024 Sep 09; 25(1):842. PubMed ID: 39251911 [Abstract] [Full Text] [Related]
56. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Sigurpalsdottir BD, Stefansson OA, Holley G, Beyter D, Zink F, Hardarson MÞ, Sverrisson SÞ, Kristinsdottir N, Magnusdottir DN, Magnusson OÞ, Gudbjartsson DF, Halldorsson BV, Stefansson K. Genome Biol; 2024 Mar 11; 25(1):69. PubMed ID: 38468278 [Abstract] [Full Text] [Related]
57. TARGETING THE 16S RRNA GENE FOR BACTERIAL IDENTIFICATION IN COMPLEX MIXED SAMPLES: COMPARATIVE EVALUATION OF SECOND (ILLUMINA) AND THIRD (OXFORD NANOPORE TECHNOLOGIES) GENERATION SEQUENCING TECHNOLOGIES. Winand R, Bogaerts B, Hoffman S, Lefevre L, Delvoye M, Braekel JV, Fu Q, Roosens NH, Keersmaecker SC, Vanneste K. Int J Mol Sci; 2019 Dec 31; 21(1):. PubMed ID: 31906254 [Abstract] [Full Text] [Related]
58. ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. Leung AW, Leung HC, Wong CL, Zheng ZX, Lui WW, Luk HM, Lo IF, Luo R, Lam TW. BMC Med Genomics; 2022 Mar 04; 15(1):43. PubMed ID: 35246132 [Abstract] [Full Text] [Related]
59. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Ni Y, Liu X, Simeneh ZM, Yang M, Li R. Comput Struct Biotechnol J; 2023 Mar 04; 21():2352-2364. PubMed ID: 37025654 [Abstract] [Full Text] [Related]