These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 37804826

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y, Li D, Hu Y, Ding G, Zhou H, Zhang G.
    Nanotechnology; 2020 Jul 31; 31(31):315709. PubMed ID: 32203947
    [Abstract] [Full Text] [Related]

  • 3. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
    Wu X, Varshney V, Lee J, Zhang T, Wohlwend JL, Roy AK, Luo T.
    Nano Lett; 2016 Jun 08; 16(6):3925-35. PubMed ID: 27152879
    [Abstract] [Full Text] [Related]

  • 4. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J, Meng L.
    ACS Omega; 2022 Jun 14; 7(23):20186-20194. PubMed ID: 35722022
    [Abstract] [Full Text] [Related]

  • 5. Lattice thermal conductivity of borophene from first principle calculation.
    Xiao H, Cao W, Ouyang T, Guo S, He C, Zhong J.
    Sci Rep; 2017 Apr 04; 7():45986. PubMed ID: 28374853
    [Abstract] [Full Text] [Related]

  • 6. Hydrogenation driven ultra-low lattice thermal conductivity inβ12borophene.
    Sharma A, Rangra VS.
    J Phys Condens Matter; 2024 Feb 23; 36(20):. PubMed ID: 38335552
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX, Liu JT, Guo SD, Li HC.
    Phys Chem Chem Phys; 2017 Jun 07; 19(22):14520-14526. PubMed ID: 28537286
    [Abstract] [Full Text] [Related]

  • 10. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe2 and ZrS2) from first-principles: a comparative study.
    Chen G, Bao W, Wang Z, Tang D.
    Phys Chem Chem Phys; 2023 Mar 29; 25(13):9225-9237. PubMed ID: 36919457
    [Abstract] [Full Text] [Related]

  • 11. Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation.
    Hu Y, Yin Y, Li S, Zhou H, Li D, Zhang G.
    Nano Lett; 2020 Oct 14; 20(10):7619-7626. PubMed ID: 32852213
    [Abstract] [Full Text] [Related]

  • 12. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N, Xu L, Wang HQ, Zheng JC.
    Nanotechnology; 2011 Mar 11; 22(10):105705. PubMed ID: 21289391
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. First-principles study of thermal properties of borophene.
    Sun H, Li Q, Wan XG.
    Phys Chem Chem Phys; 2016 Jun 01; 18(22):14927-32. PubMed ID: 27188523
    [Abstract] [Full Text] [Related]

  • 16. High anisotropy of fully hydrogenated borophene.
    Wang Z, Lü TY, Wang HQ, Feng YP, Zheng JC.
    Phys Chem Chem Phys; 2016 Nov 23; 18(46):31424-31430. PubMed ID: 27844074
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Anharmonic lattice dynamics and thermal transport of monolayer InSe under equibiaxial tensile strains.
    Zeng Z, Li S, Tadano T, Chen Y.
    J Phys Condens Matter; 2020 Aug 31; 32(47):. PubMed ID: 32877375
    [Abstract] [Full Text] [Related]

  • 20. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.
    Liu G, Wang H, Gao Y, Zhou J, Wang H.
    Phys Chem Chem Phys; 2017 Jan 25; 19(4):2843-2849. PubMed ID: 28067931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.