These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 37805128
41. Feasibility and biomechanical performance of a novel transdiscal screw system for one level in non-spondylolisthetic lumbar fusion: an in vitro investigation. Aghayev K, Gonzalez-Blohm SA, Doulgeris JJ, Lee WE, Waddell JK, Vrionis FD. Spine J; 2014 Apr; 14(4):705-13. PubMed ID: 24268392 [Abstract] [Full Text] [Related]
42. Stepwise reduction of bone mineral density increases the risk of cage subsidence in oblique lumbar interbody fusion patients biomechanically: an in-silico study. Yang ZQ, Cai P, Li JC, Wang XD, Xie TH, Pu XX, Lin R, Zeng JC, Song YM. BMC Musculoskelet Disord; 2022 Dec 12; 23(1):1083. PubMed ID: 36503614 [Abstract] [Full Text] [Related]
43. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ. Spine (Phila Pa 1976); 2012 Jan 15; 37(2):E79-85. PubMed ID: 21629171 [Abstract] [Full Text] [Related]
51. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study. Du L, Sun XJ, Zhou TJ, Li YC, Chen C, Zhao CQ, Zhang K, Zhao J. BMC Musculoskelet Disord; 2017 Nov 21; 18(1):474. PubMed ID: 29162074 [Abstract] [Full Text] [Related]
52. A Comparative Biomechanical Analysis of Stand Alone Versus Facet Screw and Pedicle Screw Augmented Lateral Interbody Arthrodesis: An In Vitro Human Cadaveric Model. Kretzer RM, Molina C, Hu N, Umekoji H, Baaj AA, Serhan H, Cunningham BW. Clin Spine Surg; 2016 Aug 21; 29(7):E336-43. PubMed ID: 27137151 [Abstract] [Full Text] [Related]
53. Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis. Wang B, Hua W, Ke W, Lu S, Li X, Zeng X, Yang C. World Neurosurg; 2019 Jun 21; 126():e819-e824. PubMed ID: 30862579 [Abstract] [Full Text] [Related]
54. Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System)--a finite element analysis. Chen CS, Huang CH, Shih SL. BMC Musculoskelet Disord; 2015 Apr 09; 16():81. PubMed ID: 25880231 [Abstract] [Full Text] [Related]
56. Biomechanical assessment of different transforaminal lumbar interbody fusion constructs in normal and osteoporotic condition: a finite element analysis. Liu C, Zhao M, Zhang W, Wang C, Hu B, Wang K, Xu W, Li L, Si H. Spine J; 2024 Jun 09; 24(6):1121-1131. PubMed ID: 38316364 [Abstract] [Full Text] [Related]
57. Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery--a finite element analysis. Chen SH, Lin SC, Tsai WC, Wang CW, Chao SH. BMC Musculoskelet Disord; 2012 May 16; 13():72. PubMed ID: 22591664 [Abstract] [Full Text] [Related]
58. Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis. Wu J, Feng Q, Yang D, Xu H, Wen W, Xu H, Miao J. BMC Musculoskelet Disord; 2023 Feb 01; 24(1):85. PubMed ID: 36726086 [Abstract] [Full Text] [Related]
59. Biomechanical assessment of lumbar stability: finite element analysis of TLIF with a novel combination of coflex and pedicle screws. Meganathan S, Alphin MS. Acta Bioeng Biomech; 2023 Dec 01; 25(4):133-143. PubMed ID: 39072460 [Abstract] [Full Text] [Related]
60. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. Lu T, Lu Y. World Neurosurg; 2019 Sep 01; 129():e890-e899. PubMed ID: 31226452 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]