These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 37827356

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil.
    Liu S, Lu Y, Yang C, Liu C, Ma L, Dang Z.
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23815-23824. PubMed ID: 28866780
    [Abstract] [Full Text] [Related]

  • 4. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study.
    Lewandowská Š, Vaňková Z, Beesley L, Cajthaml T, Wickramasinghe N, Vojar J, Vítková M, Tsang DCW, Ndungu K, Komárek M.
    Sci Total Environ; 2024 Jun 01; 927():171892. PubMed ID: 38531450
    [Abstract] [Full Text] [Related]

  • 5. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z, Wang L, Wu J, Xu Y, Wang F, Tang X, Xu J, Ok YS, Meng J, Liu X.
    Environ Pollut; 2020 May 01; 260():114098. PubMed ID: 32041084
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response.
    Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H.
    Environ Sci Pollut Res Int; 2019 Apr 01; 26(11):10776-10789. PubMed ID: 30778927
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.
    Su H, Fang Z, Tsang PE, Fang J, Zhao D.
    Environ Pollut; 2016 Jul 01; 214():94-100. PubMed ID: 27064615
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Reducing As availability in calcareous soils using nanoscale zero valent iron.
    Azari P, Bostani AA.
    Environ Sci Pollut Res Int; 2017 Sep 01; 24(25):20438-20445. PubMed ID: 28707247
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Remediation of Cd-Contaminated Soil by Modified Nanoscale Zero-Valent Iron: Role of Plant Root Exudates and Inner Mechanisms.
    Huang D, Yang Y, Deng R, Gong X, Zhou W, Chen S, Li B, Wang G.
    Int J Environ Res Public Health; 2021 May 30; 18(11):. PubMed ID: 34070880
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent.
    Gómez-Sagasti MT, Epelde L, Anza M, Urra J, Alkorta I, Garbisu C.
    J Hazard Mater; 2019 Feb 15; 364():591-599. PubMed ID: 30390579
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.