These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 37842926

  • 1. Optimized Red-Absorbing Dyes for Imaging and Sensing.
    Grimm JB, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD.
    J Am Chem Soc; 2023 Oct 25; 145(42):23000-23013. PubMed ID: 37842926
    [Abstract] [Full Text] [Related]

  • 2. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA).
    Graham TGW, Ferrie JJ, Dailey GM, Tjian R, Darzacq X.
    Elife; 2022 Aug 17; 11():. PubMed ID: 35976226
    [Abstract] [Full Text] [Related]

  • 3. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K.
    Yakugaku Zasshi; 2019 Aug 17; 139(2):277-283. PubMed ID: 30713240
    [Abstract] [Full Text] [Related]

  • 4. A general method to optimize and functionalize red-shifted rhodamine dyes.
    Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B, Falco N, Schaefer K, Patel R, Zheng Q, Liu Z, Lippincott-Schwartz J, Brown TA, Lavis LD.
    Nat Methods; 2020 Aug 17; 17(8):815-821. PubMed ID: 32719532
    [Abstract] [Full Text] [Related]

  • 5. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.
    Grimm JB, Klein T, Kopek BG, Shtengel G, Hess HF, Sauer M, Lavis LD.
    Angew Chem Int Ed Engl; 2016 Jan 26; 55(5):1723-7. PubMed ID: 26661345
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM, Ryder AG.
    Biophys Chem; 2010 Nov 26; 152(1-3):55-64. PubMed ID: 20724058
    [Abstract] [Full Text] [Related]

  • 8. A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy.
    Bucevičius J, Gerasimaitė R, Kiszka KA, Pradhan S, Kostiuk G, Koenen T, Lukinavičius G.
    Nat Commun; 2023 Mar 09; 14(1):1306. PubMed ID: 36894547
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging.
    Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, Singer RH, Lavis LD.
    ACS Cent Sci; 2019 Sep 25; 5(9):1602-1613. PubMed ID: 31572787
    [Abstract] [Full Text] [Related]

  • 11. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy.
    Kolmakov K, Belov VN, Bierwagen J, Ringemann C, Müller V, Eggeling C, Hell SW.
    Chemistry; 2010 Jan 04; 16(1):158-66. PubMed ID: 19950338
    [Abstract] [Full Text] [Related]

  • 12. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.
    Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM, Betzig E, Lavis LD.
    ACS Chem Biol; 2013 Jan 04; 8(6):1303-10. PubMed ID: 23557713
    [Abstract] [Full Text] [Related]

  • 13. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.
    Belov VN, Mitronova GY, Bossi ML, Boyarskiy VP, Hebisch E, Geisler C, Kolmakov K, Wurm CA, Willig KI, Hell SW.
    Chemistry; 2014 Oct 06; 20(41):13162-73. PubMed ID: 25196166
    [Abstract] [Full Text] [Related]

  • 14. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY, Belov VN, Bossi ML, Wurm CA, Meyer L, Medda R, Moneron G, Bretschneider S, Eggeling C, Jakobs S, Hell SW.
    Chemistry; 2010 Apr 19; 16(15):4477-88. PubMed ID: 20309973
    [Abstract] [Full Text] [Related]

  • 15. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G.
    Saha J, Datta Roy A, Dey D, Chakraborty S, Bhattacharjee D, Paul PK, Hussain SA.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr 19; 149():143-9. PubMed ID: 25956326
    [Abstract] [Full Text] [Related]

  • 16. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX, Zhang XB, Li Z, Gong YJ, Wu XY, Jin Z, He CM, Jian LX, Zhang J, Shen GL, Yu RQ.
    Anal Chem; 2010 Apr 15; 82(8):3108-13. PubMed ID: 20334436
    [Abstract] [Full Text] [Related]

  • 17. Reduced dyes enhance single-molecule localization density for live superresolution imaging.
    Carlini L, Benke A, Reymond L, Lukinavičius G, Manley S.
    Chemphyschem; 2014 Mar 17; 15(4):750-5. PubMed ID: 24554553
    [Abstract] [Full Text] [Related]

  • 18. Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies.
    Bénard M, Schapman D, Chamot C, Dubois F, Levallet G, Komuro H, Galas L.
    Int J Mol Sci; 2021 Oct 14; 22(20):. PubMed ID: 34681761
    [Abstract] [Full Text] [Related]

  • 19. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.
    Kolmakov K, Wurm CA, Meineke DN, Göttfert F, Boyarskiy VP, Belov VN, Hell SW.
    Chemistry; 2014 Jan 03; 20(1):146-57. PubMed ID: 24338798
    [Abstract] [Full Text] [Related]

  • 20. Recent advances in Si-rhodamine-based fluorescent probes for live-cell imaging.
    Ohno H, Sasaki E, Yamada S, Hanaoka K.
    Org Biomol Chem; 2024 Apr 24; 22(16):3099-3108. PubMed ID: 38444309
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.