These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 37845410

  • 1. The regulatory landscape of the yeast phosphoproteome.
    Leutert M, Barente AS, Fukuda NK, Rodriguez-Mias RA, Villén J.
    Nat Struct Mol Biol; 2023 Nov; 30(11):1761-1773. PubMed ID: 37845410
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update.
    Sadowski I, Breitkreutz BJ, Stark C, Su TC, Dahabieh M, Raithatha S, Bernhard W, Oughtred R, Dolinski K, Barreto K, Tyers M.
    Database (Oxford); 2013 Nov; 2013():bat026. PubMed ID: 23674503
    [Abstract] [Full Text] [Related]

  • 4. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.
    Mascaraque V, Hernáez ML, Jiménez-Sánchez M, Hansen R, Gil C, Martín H, Cid VJ, Molina M.
    Mol Cell Proteomics; 2013 Mar; 12(3):557-74. PubMed ID: 23221999
    [Abstract] [Full Text] [Related]

  • 5. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.
    Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C.
    J Proteomics; 2014 Jun 25; 106():140-50. PubMed ID: 24769239
    [Abstract] [Full Text] [Related]

  • 6. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H.
    J Proteome Res; 2012 Apr 06; 11(4):2397-408. PubMed ID: 22369663
    [Abstract] [Full Text] [Related]

  • 7. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.
    Huang D, Piening BD, Kennedy JJ, Lin C, Jones-Weinert CW, Yan P, Paulovich AG.
    Genetics; 2016 May 06; 203(1):353-68. PubMed ID: 27017623
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Identifying protein kinase-specific effectors of the osmostress response in yeast.
    Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W.
    Sci Signal; 2017 Mar 07; 10(469):. PubMed ID: 28270554
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans.
    Halova L, Cobley D, Franz-Wachtel M, Wang T, Morrison KR, Krug K, Nalpas N, Maček B, Hagan IM, Humphrey SJ, Petersen J.
    Open Biol; 2021 Apr 07; 11(4):200405. PubMed ID: 33823663
    [Abstract] [Full Text] [Related]

  • 13. In-depth and 3-dimensional exploration of the budding yeast phosphoproteome.
    Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB.
    EMBO Rep; 2021 Feb 03; 22(2):e51121. PubMed ID: 33491328
    [Abstract] [Full Text] [Related]

  • 14. Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast.
    Dokládal L, Stumpe M, Hu Z, Jaquenoud M, Dengjel J, De Virgilio C.
    Cell Rep; 2021 Dec 28; 37(13):110149. PubMed ID: 34965436
    [Abstract] [Full Text] [Related]

  • 15. Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit.
    Touati SA, Hofbauer L, Jones AW, Snijders AP, Kelly G, Uhlmann F.
    Cell Rep; 2019 Nov 12; 29(7):2105-2119.e4. PubMed ID: 31722221
    [Abstract] [Full Text] [Related]

  • 16. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.
    Soulard A, Cremonesi A, Moes S, Schütz F, Jenö P, Hall MN.
    Mol Biol Cell; 2010 Oct 01; 21(19):3475-86. PubMed ID: 20702584
    [Abstract] [Full Text] [Related]

  • 17. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.
    Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R.
    Sci Signal; 2010 Dec 21; 3(153):rs4. PubMed ID: 21177495
    [Abstract] [Full Text] [Related]

  • 18. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H.
    Mol Cell Proteomics; 2012 Oct 21; 11(10):1070-83. PubMed ID: 22798277
    [Abstract] [Full Text] [Related]

  • 19. A global protein kinase and phosphatase interaction network in yeast.
    Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M.
    Science; 2010 May 21; 328(5981):1043-6. PubMed ID: 20489023
    [Abstract] [Full Text] [Related]

  • 20. Integrative features of the yeast phosphoproteome and protein-protein interaction map.
    Yachie N, Saito R, Sugiyama N, Tomita M, Ishihama Y.
    PLoS Comput Biol; 2011 Jan 27; 7(1):e1001064. PubMed ID: 21298081
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.