These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
437 related items for PubMed ID: 37847540
1. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y, Tapio K, Wegner G, Kogikoski S, Rüstig S, Prietzel C, Busch K, Bald I. ACS Nano; 2023 Nov 14; 17(21):21227-21239. PubMed ID: 37847540 [Abstract] [Full Text] [Related]
2. A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy. Tapio K, Mostafa A, Kanehira Y, Suma A, Dutta A, Bald I. ACS Nano; 2021 Apr 27; 15(4):7065-7077. PubMed ID: 33872513 [Abstract] [Full Text] [Related]
3. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Prinz J, Heck C, Ellerik L, Merk V, Bald I. Nanoscale; 2016 Mar 14; 8(10):5612-20. PubMed ID: 26892770 [Abstract] [Full Text] [Related]
4. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing. Tanwar S, Kaur V, Kaur G, Sen T. J Phys Chem Lett; 2021 Aug 26; 12(33):8141-8150. PubMed ID: 34410129 [Abstract] [Full Text] [Related]
6. Single-Molecule Surface-Enhanced Raman Scattering Measurements Enabled by Plasmonic DNA Origami Nanoantennas. Mostafa A, Kanehira Y, Dutta A, Kogikoski S, Bald I. J Vis Exp; 2023 Jul 21; (197):. PubMed ID: 37677030 [Abstract] [Full Text] [Related]
7. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. Simoncelli S, Roller EM, Urban P, Schreiber R, Turberfield AJ, Liedl T, Lohmüller T. ACS Nano; 2016 Nov 22; 10(11):9809-9815. PubMed ID: 27649370 [Abstract] [Full Text] [Related]
8. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Kogikoski S, Tapio K, von Zander RE, Saalfrank P, Bald I. Molecules; 2021 Mar 17; 26(6):. PubMed ID: 33802892 [Abstract] [Full Text] [Related]
9. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP. J Am Chem Soc; 2013 Jan 09; 135(1):301-8. PubMed ID: 23214430 [Abstract] [Full Text] [Related]
10. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol. Li S, Shi B, He D, Zhou H, Gao Z. J Hazard Mater; 2023 Sep 15; 458():131874. PubMed ID: 37379602 [Abstract] [Full Text] [Related]
11. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
12. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Thacker VV, Herrmann LO, Sigle DO, Zhang T, Liedl T, Baumberg JJ, Keyser UF. Nat Commun; 2014 Mar 13; 5():3448. PubMed ID: 24622339 [Abstract] [Full Text] [Related]
13. Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. Prinz J, Matković A, Pešić J, Gajić R, Bald I. Small; 2016 Oct 13; 12(39):5458-5467. PubMed ID: 27594092 [Abstract] [Full Text] [Related]
14. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP. J Am Chem Soc; 2010 Aug 11; 132(31):10903-10. PubMed ID: 20681724 [Abstract] [Full Text] [Related]
15. Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering. Dutta A, Tapio K, Suma A, Mostafa A, Kanehira Y, Carnevale V, Bussi G, Bald I. Nanoscale; 2022 Nov 17; 14(44):16467-16478. PubMed ID: 36305892 [Abstract] [Full Text] [Related]
16. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H, Lee JH, Jin SM, Suh YD, Nam JM. Nano Lett; 2013 Nov 17; 13(12):6113-21. PubMed ID: 24256433 [Abstract] [Full Text] [Related]
18. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Pilo-Pais M, Watson A, Demers S, LaBean TH, Finkelstein G. Nano Lett; 2014 Jul 05; 14(4):2099-104. PubMed ID: 24645937 [Abstract] [Full Text] [Related]
19. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. Wang Y, Yu Y, Liu Y, Yang S. ACS Sens; 2018 Nov 26; 3(11):2343-2350. PubMed ID: 30350595 [Abstract] [Full Text] [Related]
20. Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Fang W, Jia S, Chao J, Wang L, Duan X, Liu H, Li Q, Zuo X, Wang L, Wang L, Liu N, Fan C. Sci Adv; 2019 Sep 26; 5(9):eaau4506. PubMed ID: 31598548 [Abstract] [Full Text] [Related] Page: [Next] [New Search]