These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 37849353

  • 1. Precursor skyrmion states near the ordering temperatures of chiral magnets.
    Leonov AO.
    Phys Chem Chem Phys; 2023 Nov 01; 25(42):28691-28702. PubMed ID: 37849353
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.
    Leonov AO, Rößler UK.
    Nanomaterials (Basel); 2023 Feb 27; 13(5):. PubMed ID: 36903768
    [Abstract] [Full Text] [Related]

  • 3. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets.
    Leonov AO.
    Phys Rev E; 2021 Oct 27; 104(4-1):044701. PubMed ID: 34781482
    [Abstract] [Full Text] [Related]

  • 4. Skyrmion flop transition and congregation of mutually orthogonal skyrmions in cubic helimagnets.
    Vlasov SM, Uzdin VM, Leonov AO.
    J Phys Condens Matter; 2020 May 01; 32(18):185801. PubMed ID: 31962299
    [Abstract] [Full Text] [Related]

  • 5. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T, Leonov AO.
    Nanomaterials (Basel); 2023 Jul 14; 13(14):. PubMed ID: 37513084
    [Abstract] [Full Text] [Related]

  • 6. Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures.
    Beg M, Carey R, Wang W, Cortés-Ortuño D, Vousden M, Bisotti MA, Albert M, Chernyshenko D, Hovorka O, Stamps RL, Fangohr H.
    Sci Rep; 2015 Nov 25; 5():17137. PubMed ID: 26601904
    [Abstract] [Full Text] [Related]

  • 7. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K, White JS, Morikawa D, Dewhurst CD, Cubitt R, Kikkawa A, Yu X, Tokunaga Y, Arima TH, Rønnow HM, Tokura Y, Taguchi Y.
    Sci Adv; 2018 Sep 25; 4(9):eaar7043. PubMed ID: 30225364
    [Abstract] [Full Text] [Related]

  • 8. Room-temperature skyrmion phase in bulk Cu2OSeO3 under high pressures.
    Deng L, Wu HC, Litvinchuk AP, Yuan NFQ, Lee JJ, Dahal R, Berger H, Yang HD, Chu CW.
    Proc Natl Acad Sci U S A; 2020 Apr 21; 117(16):8783-8787. PubMed ID: 32241892
    [Abstract] [Full Text] [Related]

  • 9. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV, Kolesnikov AG, Kim YJ, Cha IH, Sadovnikov AV, Nikitov SA, Soldatov IV, Talapatra A, Mohanty J, Mruczkiewicz M, Ge Y, Kerber N, Dittrich F, Virnau P, Kläui M, Kim YK, Samardak AS.
    ACS Nano; 2020 Nov 24; 14(11):14960-14970. PubMed ID: 33152236
    [Abstract] [Full Text] [Related]

  • 10. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet.
    Li L, Song D, Wang W, Zheng F, Kovács A, Tian M, Dunin-Borkowski RE, Du H.
    Adv Mater; 2023 Apr 24; 35(16):e2209798. PubMed ID: 36573473
    [Abstract] [Full Text] [Related]

  • 11. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications.
    One RA, Mican S, Cimpoeșu AG, Joldos M, Tetean R, Tiușan CV.
    Nanomaterials (Basel); 2022 Dec 10; 12(24):. PubMed ID: 36558263
    [Abstract] [Full Text] [Related]

  • 12. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets.
    Fujishiro Y, Kanazawa N, Nakajima T, Yu XZ, Ohishi K, Kawamura Y, Kakurai K, Arima T, Mitamura H, Miyake A, Akiba K, Tokunaga M, Matsuo A, Kindo K, Koretsune T, Arita R, Tokura Y.
    Nat Commun; 2019 Mar 05; 10(1):1059. PubMed ID: 30837479
    [Abstract] [Full Text] [Related]

  • 13. Embedded Skyrmion Bags in Thin Films of Chiral Magnets.
    Yang L, Savchenko AS, Zheng F, Kiselev NS, Rybakov FN, Han X, Blügel S, Dunin-Borkowski RE.
    Adv Mater; 2024 Sep 05; 36(36):e2403274. PubMed ID: 39045913
    [Abstract] [Full Text] [Related]

  • 14. Stabilization and racetrack application of asymmetric Néel skyrmions in hybrid nanostructures.
    Zelent M, Moalic M, Mruczkiewicz M, Li X, Zhou Y, Krawczyk M.
    Sci Rep; 2023 Aug 21; 13(1):13572. PubMed ID: 37604926
    [Abstract] [Full Text] [Related]

  • 15. Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet.
    Singh D, Fujishiro Y, Hayami S, Moody SH, Nomoto T, Baral PR, Ukleev V, Cubitt R, Steinke NJ, Gawryluk DJ, Pomjakushina E, Ōnuki Y, Arita R, Tokura Y, Kanazawa N, White JS.
    Nat Commun; 2023 Dec 05; 14(1):8050. PubMed ID: 38052859
    [Abstract] [Full Text] [Related]

  • 16. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR, Guslienko KY.
    Materials (Basel); 2018 Nov 11; 11(11):. PubMed ID: 30423873
    [Abstract] [Full Text] [Related]

  • 17. Spontaneous skyrmion ground states in magnetic metals.
    Rössler UK, Bogdanov AN, Pfleiderer C.
    Nature; 2006 Aug 17; 442(7104):797-801. PubMed ID: 16915285
    [Abstract] [Full Text] [Related]

  • 18. Effects of second neighbor interactions on skyrmion lattices in chiral magnets.
    Oliveira EAS, Silva RL, Silva RC, Pereira AR.
    J Phys Condens Matter; 2017 May 24; 29(20):205801. PubMed ID: 28248638
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.