These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 37851258

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.
    Li C, Xie F, Ma Y, Cai T, Li H, Huang Z, Yuan G.
    J Hazard Mater; 2010 Jun 15; 178(1-3):823-33. PubMed ID: 20197211
    [Abstract] [Full Text] [Related]

  • 3. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).
    Tian B, Cui Y, Qin Z, Wen L, Li Z, Chu H, Xin B.
    J Environ Manage; 2022 Jun 15; 312():114927. PubMed ID: 35358844
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes.
    Yuxin Z, Ting S, Hongyu C, Ying Z, Zhi G, Suiyi Z, Xinfeng X, Hong Z, Yidi G, Yang H.
    Environ Res; 2023 Jan 01; 216(Pt 1):114462. PubMed ID: 36191617
    [Abstract] [Full Text] [Related]

  • 12. Comparative study of electroplating sludge reutilization in China: environmental and economic performances.
    Li T, Wei G, Liu H, Gong Y, Zhao H, Wang Y, Wang J.
    Environ Sci Pollut Res Int; 2023 Oct 01; 30(48):106598-106610. PubMed ID: 37733201
    [Abstract] [Full Text] [Related]

  • 13. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals.
    Yong Y, Hua W, Jianhang H.
    J Hazard Mater; 2021 Sep 05; 417():126020. PubMed ID: 33992022
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y, Li L, Huang M, Liu Y, Xu J, Xu Z, Lei Y.
    Sci Total Environ; 2022 Sep 10; 838(Pt 3):156453. PubMed ID: 35660588
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.
    Qian G, Yang X, Dong S, Zhou J, Sun Y, Xu Y, Liu Q.
    J Hazard Mater; 2009 Jun 15; 165(1-3):955-60. PubMed ID: 19062163
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. One-step extraction of high-purity CuCl2·2H2O from copper-containing electroplating sludge based on the directional phase conversion.
    Yu Y, Huang Q, Zhou J, Wu Z, Deng H, Liu X, Lin Z.
    J Hazard Mater; 2021 Jul 05; 413():125469. PubMed ID: 33930976
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.