These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 37865268

  • 1. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins.
    Mattheisen JM, Rasmussen VA, Ceraudo E, Kolodzinski A, Horioka-Duplix M, Sakmar TP, Huber T.
    Anal Biochem; 2024 Jan 01; 684():115361. PubMed ID: 37865268
    [Abstract] [Full Text] [Related]

  • 2. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL, Fu H.
    Methods Mol Biol; 2016 Jan 01; 1439():263-71. PubMed ID: 27317001
    [Abstract] [Full Text] [Related]

  • 3. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.
    Pernomian L, Gomes MS, Moreira JD, da Silva CHTP, Rosa JMC, Cardoso CRB.
    Curr Radiopharm; 2017 Jan 01; 10(1):16-20. PubMed ID: 28183248
    [Abstract] [Full Text] [Related]

  • 4. Single-Cell NanoBRET Imaging with Green-Range HaloTag Acceptor.
    Thirukkumaran O, Mizuno H.
    Methods Mol Biol; 2022 Jan 01; 2525():207-218. PubMed ID: 35836070
    [Abstract] [Full Text] [Related]

  • 5. Small Molecule-Protein Hybrid for Voltage Imaging via Quenching of Bioluminescence.
    Benlian BR, Klier PEZ, Martinez KN, Schwinn MK, Kirkland TA, Miller EW.
    ACS Sens; 2021 May 28; 6(5):1857-1863. PubMed ID: 33723996
    [Abstract] [Full Text] [Related]

  • 6. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase.
    Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L.
    J Biol Chem; 2021 May 28; 296():100366. PubMed ID: 33545176
    [Abstract] [Full Text] [Related]

  • 7. The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells.
    Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R, Butler BL, Eggers CT, Kirkland TA, Wood KV, Friedman Ohana R.
    J Biol Chem; 2020 Apr 10; 295(15):5124-5135. PubMed ID: 32107310
    [Abstract] [Full Text] [Related]

  • 8. Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy.
    Kim J, Grailhe R.
    Cytometry A; 2016 Aug 10; 89(8):742-6. PubMed ID: 27144967
    [Abstract] [Full Text] [Related]

  • 9. Measuring Protein-Protein Interactions in Cells using Nanoluciferase Bioluminescence Resonance Energy Transfer (NanoBRET) Assay.
    Szewczyk MM, Owens DDG, Barsyte-Lovejoy D.
    Methods Mol Biol; 2023 Aug 10; 2706():137-148. PubMed ID: 37558946
    [Abstract] [Full Text] [Related]

  • 10. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing.
    White CW, Johnstone EKM, See HB, Pfleger KDG.
    Cell Signal; 2019 Feb 10; 54():27-34. PubMed ID: 30471466
    [Abstract] [Full Text] [Related]

  • 11. Measuring GPCR Stoichiometry Using Types-1, -2, and -3 Bioluminescence Resonance Energy Transfer-Based Assays.
    Felce JH, James JR, Davis SJ.
    Methods Mol Biol; 2019 Feb 10; 1947():183-197. PubMed ID: 30969417
    [Abstract] [Full Text] [Related]

  • 12. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs.
    Stoddart LA, Kilpatrick LE, Hill SJ.
    Trends Pharmacol Sci; 2018 Feb 10; 39(2):136-147. PubMed ID: 29132917
    [Abstract] [Full Text] [Related]

  • 13. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.
    Wan Q, Okashah N, Inoue A, Nehmé R, Carpenter B, Tate CG, Lambert NA.
    J Biol Chem; 2018 May 11; 293(19):7466-7473. PubMed ID: 29523687
    [Abstract] [Full Text] [Related]

  • 14. GPCR dimerisation.
    Milligan G, Ramsay D, Pascal G, Carrillo JJ.
    Life Sci; 2003 Dec 05; 74(2-3):181-8. PubMed ID: 14607245
    [Abstract] [Full Text] [Related]

  • 15. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A.
    Methods Mol Biol; 2021 Dec 05; 2201():45-58. PubMed ID: 32975788
    [Abstract] [Full Text] [Related]

  • 16. Conformational GPCR BRET Sensors Based on Bioorthogonal Labeling of Noncanonical Amino Acids.
    Kowalski-Jahn M, Schihada H, Schulte G.
    Methods Mol Biol; 2023 Dec 05; 2676():201-213. PubMed ID: 37277635
    [Abstract] [Full Text] [Related]

  • 17. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.
    Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA.
    Nat Commun; 2016 Jul 11; 7():12178. PubMed ID: 27397672
    [Abstract] [Full Text] [Related]

  • 18. Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET.
    Adamska JM, Leftheriotis S, Bosma R, Vischer HF, Leurs R.
    Int J Mol Sci; 2024 May 04; 25(9):. PubMed ID: 38732237
    [Abstract] [Full Text] [Related]

  • 19. Application of BRET to monitor ligand binding to GPCRs.
    Stoddart LA, Johnstone EKM, Wheal AJ, Goulding J, Robers MB, Machleidt T, Wood KV, Hill SJ, Pfleger KDG.
    Nat Methods; 2015 Jul 04; 12(7):661-663. PubMed ID: 26030448
    [Abstract] [Full Text] [Related]

  • 20. Detection of receptor heteromers involving dopamine receptors by the sequential BRET-FRET technology.
    Navarro G, McCormick PJ, Mallol J, Lluís C, Franco R, Cortés A, Casadó V, Canela EI, Ferré S.
    Methods Mol Biol; 2013 Jul 04; 964():95-105. PubMed ID: 23296780
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.