These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 37879323

  • 1. Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study.
    Zhang G, Dong S, Wang X, Xin G.
    Nanotechnology; 2023 Nov 15; 35(5):. PubMed ID: 37879323
    [Abstract] [Full Text] [Related]

  • 2. Phonon thermal conduction in a graphene-C3N heterobilayer using molecular dynamics simulations.
    Han D, Wang X, Ding W, Chen Y, Zhang J, Xin G, Cheng L.
    Nanotechnology; 2019 Feb 15; 30(7):075403. PubMed ID: 30524108
    [Abstract] [Full Text] [Related]

  • 3. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y, Ma J, Yang J, Zhang Y.
    ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45742-45751. PubMed ID: 36172714
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X, Han Q.
    ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32564-32578. PubMed ID: 34196535
    [Abstract] [Full Text] [Related]

  • 9. Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential.
    Li W, Yang C.
    J Phys Condens Matter; 2023 Sep 15; 35(50):. PubMed ID: 37669661
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Chen XK, Pang M, Chen T, Du D, Chen KQ.
    ACS Appl Mater Interfaces; 2020 Apr 01; 12(13):15517-15526. PubMed ID: 32153173
    [Abstract] [Full Text] [Related]

  • 12. Strong interfacial interactions induced a large reduction in lateral thermal conductivity of transition-metal dichalcogenide superlattices.
    Zhang W, Yang JY, Liu L.
    RSC Adv; 2019 Jan 09; 9(3):1387-1393. PubMed ID: 35518039
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer.
    Hong Y, Ju MG, Zhang J, Zeng XC.
    Phys Chem Chem Phys; 2018 Jan 24; 20(4):2637-2645. PubMed ID: 29319076
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM, Pereira LFC.
    Sci Rep; 2018 Feb 09; 8(1):2737. PubMed ID: 29426893
    [Abstract] [Full Text] [Related]

  • 18. Optimally Suppressed Phonon Tunneling in van der Waals Graphene-WS2 Heterostructure with Ultralow Thermal Conductivity.
    Ding W, Ong ZY, An M, Davier B, Hu S, Ohnishi M, Shiomi J.
    Nano Lett; 2024 Oct 30; 24(43):13754-13759. PubMed ID: 39413286
    [Abstract] [Full Text] [Related]

  • 19. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures.
    Chen SN, Liu XS, Luo RH, Xu EZ, Tian JG, Liu ZB.
    ACS Appl Mater Interfaces; 2022 May 18; 14(19):22626-22633. PubMed ID: 35522991
    [Abstract] [Full Text] [Related]

  • 20. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.
    Pei QX, Zhang X, Ding Z, Zhang YY, Zhang YW.
    Phys Chem Chem Phys; 2017 Jul 14; 19(26):17180-17186. PubMed ID: 28638905
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.