These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 37882278

  • 1. Biophysical and molecular characteristics of senescing leaves of two Norway maple varieties differing in anthocyanin content.
    Rantala M, Mulo P, Tyystjärvi E, Mattila H.
    Physiol Plant; 2023; 175(5):e13999. PubMed ID: 37882278
    [Abstract] [Full Text] [Related]

  • 2. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms.
    Mattila H, Tyystjärvi E.
    Tree Physiol; 2023 May 12; 43(5):751-768. PubMed ID: 36715646
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Both external and internal factors induce heterogeneity in senescing leaves of deciduous trees.
    Mattila H, Khorobrykh S, Tyystjärvi E.
    Funct Plant Biol; 2024 Apr 12; 51():. PubMed ID: 38621018
    [Abstract] [Full Text] [Related]

  • 6. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves.
    Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR.
    J Exp Bot; 2008 Apr 12; 59(14):3903-11. PubMed ID: 18796701
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Flavonols do not affect aphid load in green or senescing birch leaves but coincide with a decrease in Photosystem II functionality.
    Mattila H, Khorobrykh S, Tyystjärvi E.
    Biol Open; 2024 Jul 15; 13(7):. PubMed ID: 38885004
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Changes in photosynthetic performance and antioxidative strategies during maturation of Norway maple (Acer platanoides L.) leaves.
    Lepeduš H, Gaća V, Viljevac M, Kovač S, Fulgosi H, Simić D, Jurković V, Cesar V.
    Plant Physiol Biochem; 2011 Apr 15; 49(4):368-76. PubMed ID: 21334907
    [Abstract] [Full Text] [Related]

  • 14. Anthocyanin influence on light absorption within juvenile and senescing sugar maple leaves - do anthocyanins function as photoprotective visible light screens?
    van den Berg AK, Vogelmann TC, Perkins TD.
    Funct Plant Biol; 2009 Sep 15; 36(9):793-800. PubMed ID: 32688689
    [Abstract] [Full Text] [Related]

  • 15. Different strategies for photoprotection during autumn senescence in maple and oak.
    Moy A, Le S, Verhoeven A.
    Physiol Plant; 2015 Oct 15; 155(2):205-216. PubMed ID: 25656106
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice.
    Tang Y, Wen X, Lu C.
    Plant Physiol Biochem; 2005 Feb 15; 43(2):193-201. PubMed ID: 15820668
    [Abstract] [Full Text] [Related]

  • 20. Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina.
    Krieger-Liszkay A, Trösch M, Krupinska K.
    Planta; 2015 Jun 15; 241(6):1497-508. PubMed ID: 25788024
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.