These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 37895412

  • 1. In Situ Visible Spectroscopic Daily Monitoring of Senescence of Japanese Maple (Acer palmatum) Leaves.
    Nakashima S, Yamakita E.
    Life (Basel); 2023 Oct 09; 13(10):. PubMed ID: 37895412
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV, Ensminger I.
    Tree Physiol; 2016 Jun 09; 36(6):694-711. PubMed ID: 26928514
    [Abstract] [Full Text] [Related]

  • 4. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms.
    Mattila H, Tyystjärvi E.
    Tree Physiol; 2023 May 12; 43(5):751-768. PubMed ID: 36715646
    [Abstract] [Full Text] [Related]

  • 5. Biophysical and molecular characteristics of senescing leaves of two Norway maple varieties differing in anthocyanin content.
    Rantala M, Mulo P, Tyystjärvi E, Mattila H.
    Physiol Plant; 2023 May 12; 175(5):e13999. PubMed ID: 37882278
    [Abstract] [Full Text] [Related]

  • 6. Anthocyanin influence on light absorption within juvenile and senescing sugar maple leaves - do anthocyanins function as photoprotective visible light screens?
    van den Berg AK, Vogelmann TC, Perkins TD.
    Funct Plant Biol; 2009 Sep 12; 36(9):793-800. PubMed ID: 32688689
    [Abstract] [Full Text] [Related]

  • 7. Leaf Coloration in Acer palmatum Is Associated with a Positive Regulator ApMYB1 with Potential for Breeding Color-Leafed Plants.
    Sun S, Zhang Q, Yu Y, Feng J, Liu C, Yang J.
    Plants (Basel); 2022 Mar 12; 11(6):. PubMed ID: 35336641
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves.
    Gitelson AA, Chivkunova OB, Merzlyak MN.
    Am J Bot; 2009 Oct 12; 96(10):1861-8. PubMed ID: 21622307
    [Abstract] [Full Text] [Related]

  • 14. Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple (Acer japonicum).
    Kitao M, Yazaki K, Tobita H, Agathokleous E, Kishimoto J, Takabayashi A, Tanaka R.
    Front Plant Sci; 2022 Oct 12; 13():1006413. PubMed ID: 36388579
    [Abstract] [Full Text] [Related]

  • 15. Transcriptomic and metabolomic analyses reveal how girdling promotes leaf color expression in Acer rubrum L.
    Yangyang Y, Qin L, Kun Y, Xiaoyi W, Pei X.
    BMC Plant Biol; 2022 Oct 24; 22(1):498. PubMed ID: 36280828
    [Abstract] [Full Text] [Related]

  • 16. Anthocyanin contribution to chlorophyll meter readings and its correction.
    Hlavinka J, Nauš J, Špundová M.
    Photosynth Res; 2013 Dec 24; 118(3):277-95. PubMed ID: 24129637
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Determination of the quantitative content of chlorophylls in leaves by reflection spectra using the random forest algorithm.
    Urbanovich EA, Afonnikov DA, Nikolaev SV.
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb 24; 25(1):64-70. PubMed ID: 34901704
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.