These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


41 related items for PubMed ID: 3790365

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Age-related changes of glucose metabolism in rat cerebral cortex with reference to glucose-derived amino acids.
    Matsumoto H, Ito M, Kikuchi S, Edamura M.
    Neurochem Res; 1985 Dec; 10(12):1615-22. PubMed ID: 2868425
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The effect of Ca+ free medium on the two different tricarboxylate cycles in the rat brain cortex slices.
    Turský T, Lassánová M.
    Physiol Bohemoslov; 1981 Dec; 30(1):11-7. PubMed ID: 6452633
    [Abstract] [Full Text] [Related]

  • 8. Neuronal-glial interactions in rats fed a ketogenic diet.
    Melø TM, Nehlig A, Sonnewald U.
    Neurochem Int; 2006 Dec; 48(6-7):498-507. PubMed ID: 16542760
    [Abstract] [Full Text] [Related]

  • 9. In vivo evidence for reduced cortical glutamate-glutamine cycling in rats treated with the antidepressant/antipanic drug phenelzine.
    Yang J, Shen J.
    Neuroscience; 2005 Dec; 135(3):927-37. PubMed ID: 16154287
    [Abstract] [Full Text] [Related]

  • 10. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.
    Johansen ML, Bak LK, Schousboe A, Iversen P, Sørensen M, Keiding S, Vilstrup H, Gjedde A, Ott P, Waagepetersen HS.
    Neurochem Int; 2007 Jun; 50(7-8):1042-51. PubMed ID: 17346854
    [Abstract] [Full Text] [Related]

  • 11. Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia.
    Pagliara AS, Goodman AD.
    J Clin Invest; 1970 Nov; 49(11):1967-74. PubMed ID: 4319966
    [Abstract] [Full Text] [Related]

  • 12. Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure.
    Michalak A, Rose C, Butterworth J, Butterworth RF.
    Hepatology; 1996 Oct; 24(4):908-13. PubMed ID: 8855196
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Some aspects on amino acid metabolism in relation to glucose and ketone bodies in brain cortex slices of the rat.
    Iakovou D, Linardou A, Philippides H, Chomatas H, Palaiologos G.
    Prog Clin Biol Res; 1982 Oct; 102 Pt C():303-16. PubMed ID: 6132399
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of inhibitors of -aminobutyrate aminotransferase on the accumulation of 3H- -aminobutyric acid by the retina.
    Neal MJ, Starr MS.
    Br J Pharmacol; 1973 Mar; 47(3):543-55. PubMed ID: 4730831
    [Abstract] [Full Text] [Related]

  • 17. Trafficking between glia and neurons of TCA cycle intermediates and related metabolites.
    Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Bakken IJ, Sonnewald U.
    Glia; 1997 Sep; 21(1):99-105. PubMed ID: 9298852
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Aspartate metabolism in rats during aging.
    Matsumoto H, Ito M.
    Exp Gerontol; 1985 Sep; 20(3-4):187-91. PubMed ID: 2866107
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.