These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A, Giovannetti M, Sbrana C. Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [Abstract] [Full Text] [Related]
24. Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Begum N, Xiao Y, Wang L, Li D, Irshad A, Zhao T. Microbiol Res; 2023 Aug; 273():127398. PubMed ID: 37167733 [Abstract] [Full Text] [Related]
25. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Ravnskov S, Larsen J. Plant Biol (Stuttg); 2016 Sep; 18(5):816-23. PubMed ID: 27094118 [Abstract] [Full Text] [Related]
26. Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress. Sui X, Wu Q, Chang W, Fan X, Song F. BMC Plant Biol; 2018 Nov 21; 18(1):289. PubMed ID: 30463523 [Abstract] [Full Text] [Related]
29. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R. Ecotoxicol Environ Saf; 2016 Nov 21; 133():47-56. PubMed ID: 27400063 [Abstract] [Full Text] [Related]
30. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N. New Phytol; 2018 Dec 21; 220(4):1161-1171. PubMed ID: 29355972 [Abstract] [Full Text] [Related]
31. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis. Liu H, Wu M, Liu J, Qu Y, Gao Y, Ren A. Microb Ecol; 2020 Jan 21; 79(1):98-109. PubMed ID: 31177395 [Abstract] [Full Text] [Related]
32. Effects of Arbuscular Mycorrhizal Fungi on Rice Growth Under Different Flooding and Shading Regimes. Wang Y, Bao X, Li S. Front Microbiol; 2021 Jan 21; 12():756752. PubMed ID: 34764946 [Abstract] [Full Text] [Related]
33. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Elliott AJ, Daniell TJ, Cameron DD, Field KJ. Plants People Planet; 2021 Sep 21; 3(5):588-599. PubMed ID: 34853824 [Abstract] [Full Text] [Related]
35. A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal. Kellogg JA, Reganold JP, Murphy KM, Carpenter-Boggs LA. Microb Ecol; 2021 Jul 21; 82(1):135-144. PubMed ID: 33580815 [Abstract] [Full Text] [Related]
36. Impact of arbuscular mycorrhizal fungi (AMF) on gene expression of some cell wall and membrane elements of wheat (Triticum aestivum L.) under water deficit using transcriptome analysis. Moradi Tarnabi Z, Iranbakhsh A, Mehregan I, Ahmadvand R. Physiol Mol Biol Plants; 2020 Jan 21; 26(1):143-162. PubMed ID: 32153322 [Abstract] [Full Text] [Related]
38. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Salloum MS, Guzzo MC, Velazquez MS, Sagadin MB, Luna CM. Can J Microbiol; 2016 Dec 21; 62(12):1034-1040. PubMed ID: 27784163 [Abstract] [Full Text] [Related]