These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 379504
1. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles. Hirata H. Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504 [No Abstract] [Full Text] [Related]
2. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. Hirata H, Altendorf K, Harold FM. J Biol Chem; 1974 May 10; 249(9):2939-45. PubMed ID: 4133356 [No Abstract] [Full Text] [Related]
3. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. Schuldiner S, Fishkes H. Biochemistry; 1978 Feb 21; 17(4):706-11. PubMed ID: 23828 [No Abstract] [Full Text] [Related]
4. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S, Kaback HR. Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
5. Determination of the membrane potential in bacterial membrane vesicles from the accumulation of N-methyldeptropine. Ruifrok PG, Konings WN, Meijer DK. FEBS Lett; 1979 Sep 01; 105(1):171-6. PubMed ID: 385342 [No Abstract] [Full Text] [Related]
6. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli. Bhattacharyya P, Epstein W, Silver S. Proc Natl Acad Sci U S A; 1971 Jul 01; 68(7):1488-92. PubMed ID: 4934520 [Abstract] [Full Text] [Related]
11. Photoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with an impermeant azidophenylgalactoside. Rudnick G, Kaback HR. J Biol Chem; 1975 Sep 10; 250(17):6847-51. PubMed ID: 1099095 [Abstract] [Full Text] [Related]
13. Ferrichrome transport in inner membrane vesicles of Escherichia coli K12. Negrin RS, Neilands JB. J Biol Chem; 1978 Apr 10; 253(7):2339-42. PubMed ID: 344313 [No Abstract] [Full Text] [Related]
14. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli. Altendorf K, Epstein W, Löhmann A. J Bacteriol; 1986 Apr 10; 166(1):334-7. PubMed ID: 3514580 [Abstract] [Full Text] [Related]
15. Active transport in bacterial cytoplasmic membrane vesicles. Kaback HR. Symp Soc Exp Biol; 1973 Apr 10; 27():145-74. PubMed ID: 4594375 [No Abstract] [Full Text] [Related]
16. A novel antiporter activity catalyzing sodium and potassium transport from right-side-out vesicles of E. coli. Verkhovskaya ML, Verkhovsky MI, Wikström M. FEBS Lett; 1995 Apr 17; 363(1-2):46-8. PubMed ID: 7729551 [Abstract] [Full Text] [Related]
17. Complexity in valinomycin effects on amino acid transport. De Cespedes C, Christensen HN. Biochim Biophys Acta; 1974 Feb 26; 339(1):139-45. PubMed ID: 4851127 [No Abstract] [Full Text] [Related]
18. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient. LeBlanc G, Rimon G, Kaback HR. Biochemistry; 1980 May 27; 19(11):2522-8. PubMed ID: 6992861 [Abstract] [Full Text] [Related]
19. Requirement for membrane potential in active transport of glutamine by Escherichia coli. Plate CA. J Bacteriol; 1979 Jan 27; 137(1):221-5. PubMed ID: 153897 [Abstract] [Full Text] [Related]
20. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ, Reeves JP, Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]