These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 379504

  • 21. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation.
    Lever JE.
    J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316
    [No Abstract] [Full Text] [Related]

  • 22. Solubilization of a functionally active proline carrier from membranes of Escherichia coli with an organic solvent.
    Amanuma H, Motojima K, Yamaguchi A, Anraku Y.
    Biochem Biophys Res Commun; 1977 Jan 24; 74(2):366-73. PubMed ID: 319795
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE.
    Biochemistry; 1977 Sep 20; 16(19):4328-34. PubMed ID: 197993
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G, Hong JS, Kerwar GK, Kaback HR.
    Arch Biochem Biophys; 1973 Feb 20; 154(2):575-82. PubMed ID: 4266260
    [No Abstract] [Full Text] [Related]

  • 34. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles.
    Cohn DE, Kaczorowski GJ, Kaback HR.
    Biochemistry; 1981 May 26; 20(11):3308-13. PubMed ID: 7018574
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients.
    Gibb LE, Eddy AA.
    Biochem J; 1972 Oct 26; 129(4):979-81. PubMed ID: 4676314
    [No Abstract] [Full Text] [Related]

  • 37. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.
    Suzuki H, Wang ZY, Yamakoshi M, Kobayashi M, Nozawa T.
    Anal Sci; 2003 Sep 26; 19(9):1239-42. PubMed ID: 14516073
    [Abstract] [Full Text] [Related]

  • 38. Sodium-dependent binding of p-nitrophenyl alpha-D-galactopyranoside to membrane vesicles isolated from Salmonella typhimurium.
    Tokuda H, Kaback HR.
    Biochemistry; 1978 Feb 21; 17(4):698-705. PubMed ID: 341975
    [No Abstract] [Full Text] [Related]

  • 39. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC, Pershadsingh HA, Johnstone RM.
    Biochim Biophys Acta; 1976 Jun 17; 436(2):475-88. PubMed ID: 1276225
    [Abstract] [Full Text] [Related]

  • 40. Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli.
    Boonstra J, Konings WN.
    Eur J Biochem; 1977 Sep 17; 78(2):361-8. PubMed ID: 21080
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.