These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 37953910

  • 1. Multi-Layer Perceptron Classifier with the Proposed Combined Feature Vector of 3D CNN Features and Lung Radiomics Features for COPD Stage Classification.
    Yang Y, Zeng N, Chen Z, Li W, Guo Y, Wang S, Duan W, Liu Y, Chen R, Kang Y.
    J Healthc Eng; 2023; 2023():3715603. PubMed ID: 37953910
    [Abstract] [Full Text] [Related]

  • 2. Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier.
    Yang Y, Li W, Guo Y, Zeng N, Wang S, Chen Z, Liu Y, Chen H, Duan W, Li X, Zhao W, Chen R, Kang Y.
    Math Biosci Eng; 2022 May 25; 19(8):7826-7855. PubMed ID: 35801446
    [Abstract] [Full Text] [Related]

  • 3. Multi-modal data combination strategy based on chest HRCT images and PFT parameters for intelligent dyspnea identification in COPD.
    Yang Y, Chen Z, Li W, Zeng N, Guo Y, Wang S, Duan W, Liu Y, Chen H, Li X, Chen R, Kang Y.
    Front Med (Lausanne); 2022 May 25; 9():980950. PubMed ID: 36619622
    [Abstract] [Full Text] [Related]

  • 4. COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images.
    Deng X, Li W, Yang Y, Wang S, Zeng N, Xu J, Hassan H, Chen Z, Liu Y, Miao X, Guo Y, Chen R, Kang Y.
    Med Biol Eng Comput; 2024 Jun 25; 62(6):1733-1749. PubMed ID: 38363487
    [Abstract] [Full Text] [Related]

  • 5. A novel lung radiomics feature for characterizing resting heart rate and COPD stage evolution based on radiomics feature combination strategy.
    Yang Y, Li W, Kang Y, Guo Y, Yang K, Li Q, Liu Y, Yang C, Chen R, Chen H, Li X, Cheng L.
    Math Biosci Eng; 2022 Feb 17; 19(4):4145-4165. PubMed ID: 35341291
    [Abstract] [Full Text] [Related]

  • 6. Lung Radiomics Features Selection for COPD Stage Classification Based on Auto-Metric Graph Neural Network.
    Yang Y, Wang S, Zeng N, Duan W, Chen Z, Liu Y, Li W, Guo Y, Chen H, Li X, Chen R, Kang Y.
    Diagnostics (Basel); 2022 Sep 20; 12(10):. PubMed ID: 36291964
    [Abstract] [Full Text] [Related]

  • 7. Learning and depicting lobe-based radiomics feature for COPD Severity staging in low-dose CT images.
    Zhao M, Wu Y, Li Y, Zhang X, Xia S, Xu J, Chen R, Liang Z, Qi S.
    BMC Pulm Med; 2024 Jun 24; 24(1):294. PubMed ID: 38915049
    [Abstract] [Full Text] [Related]

  • 8. A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD.
    Li Z, Liu L, Zhang Z, Yang X, Li X, Gao Y, Huang K.
    Acad Radiol; 2022 May 24; 29(5):663-673. PubMed ID: 35151548
    [Abstract] [Full Text] [Related]

  • 9. Comparison of Feature Selection Methods and Machine Learning Classifiers for Predicting Chronic Obstructive Pulmonary Disease Using Texture-Based CT Lung Radiomic Features.
    Makimoto K, Au R, Moslemi A, Hogg JC, Bourbeau J, Tan WC, Kirby M.
    Acad Radiol; 2023 May 24; 30(5):900-910. PubMed ID: 35965158
    [Abstract] [Full Text] [Related]

  • 10. Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification.
    El-Kenawy EM, Mirjalili S, Ibrahim A, Alrahmawy M, El-Said M, Zaki RM, Eid MM.
    IEEE Access; 2021 May 24; 9():36019-36037. PubMed ID: 34812381
    [Abstract] [Full Text] [Related]

  • 11. Acute exacerbation prediction of COPD based on Auto-metric graph neural network with inspiratory and expiratory chest CT images.
    Wang S, Li W, Zeng N, Xu J, Yang Y, Deng X, Chen Z, Duan W, Liu Y, Guo Y, Chen R, Kang Y.
    Heliyon; 2024 Apr 15; 10(7):e28724. PubMed ID: 38601695
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Multiclassifier fusion based on radiomics features for the prediction of benign and malignant primary pulmonary solid nodules.
    Shen Y, Xu F, Zhu W, Hu H, Chen T, Li Q.
    Ann Transl Med; 2020 Mar 15; 8(5):171. PubMed ID: 32309318
    [Abstract] [Full Text] [Related]

  • 15. Impact of image pre-processing methods on computed tomography radiomics features in chronic obstructive pulmonary disease.
    Au RC, Tan WC, Bourbeau J, Hogg JC, Kirby M.
    Phys Med Biol; 2021 Dec 14; 66(24):. PubMed ID: 34847536
    [Abstract] [Full Text] [Related]

  • 16. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network.
    Su R, Song J, Wang Z, Mao S, Mao Y, Wu X, Hou M.
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug 28; 47(8):1037-1048. PubMed ID: 36097771
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Combined model integrating deep learning, radiomics, and clinical data to classify lung nodules at chest CT.
    Lin CY, Guo SM, Lien JJ, Lin WT, Liu YS, Lai CH, Hsu IL, Chang CC, Tseng YL.
    Radiol Med; 2024 Jan 28; 129(1):56-69. PubMed ID: 37971691
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.