These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fluid-structure interaction simulation of ureter with vesicoureteral reflux and primary obstructed megaureter. Razavi SE, Jouybar M. Biomed Mater Eng; 2018 Jan; 29(6):821-837. PubMed ID: 30282337 [Abstract] [Full Text] [Related]
3. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. Vahidi B, Fatouraee N, Imanparast A, Moghadam AN. J Biomech Eng; 2011 Mar; 133(3):031004. PubMed ID: 21303180 [Abstract] [Full Text] [Related]
4. A two-dimensional numerical study of peristaltic contractions in obstructed ureter flows. Najafi Z, Schwartz BF, Chandy AJ, Mahajan AM. Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):22-32. PubMed ID: 29271257 [Abstract] [Full Text] [Related]
5. A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data. Vahidi B, Fatouraee N. J Theor Biol; 2012 Apr 07; 298():42-50. PubMed ID: 22214750 [Abstract] [Full Text] [Related]
6. Computational flow analysis of a single peristaltic wave propagation in the ureter. Keni LG, Hayoz MJ, Khader SMA, Hegde P, Prakashini K, Tamagawa M, Satish Shenoy B, Hameed BMZ, Zuber M. Comput Methods Programs Biomed; 2021 Oct 07; 210():106378. PubMed ID: 34507083 [Abstract] [Full Text] [Related]
9. A numerical simulation of peristaltic motion in the ureter using fluid structure interactions. Vahidi B, Fatouraee N. Annu Int Conf IEEE Eng Med Biol Soc; 2007 Oct 07; 2007():1168-71. PubMed ID: 18002170 [Abstract] [Full Text] [Related]
10. A three-dimensional (3D) two-way coupled fluid-structure interaction (FSI) study of peristaltic flow in obstructed ureters. Takaddus AT, Chandy AJ. Int J Numer Method Biomed Eng; 2018 Oct 07; 34(10):e3122. PubMed ID: 29939493 [Abstract] [Full Text] [Related]
11. A fluid-structure interaction (FSI)-based numerical investigation of peristalsis in an obstructed human ureter. Takaddus AT, Gautam P, Chandy AJ. Int J Numer Method Biomed Eng; 2018 Sep 07; 34(9):e3104. PubMed ID: 29737631 [Abstract] [Full Text] [Related]
12. Pharmacologic manipulation of the porcine ureter: Acute impact of topical drugs on ureteral diameter and peristaltic activity. Ames CD, Weld KJ, Dryer ST, Hruby G, Minor SD, Yan Y, Figenshau RS, Bhayani S, Landman J, Venkatesh R. J Endourol; 2006 Nov 07; 20(11):943-8. PubMed ID: 17144869 [Abstract] [Full Text] [Related]
18. The role of ureteral peristaltic rate and bolus volume on increasing urine flow. Saeki H, Morita T, Weiss RM, Miyagawa I. Urol Int; 1986 Nov 07; 41(3):174-9. PubMed ID: 3750577 [Abstract] [Full Text] [Related]
19. Flow of urine through the ureter: a collapsible, muscular tube undergoing peristalsis. Griffiths DJ. J Biomech Eng; 1989 Aug 07; 111(3):206-11. PubMed ID: 2779185 [Abstract] [Full Text] [Related]
20. Dynamics of the upper urinary tract: II. The effect of variations of peristaltic frequency and bladder pressure on pyeloureteral pressure/flow relations. Griffiths DJ, Constantinou CE, Mortensen J, Djurhuus JC. Phys Med Biol; 1987 Jul 07; 32(7):823-33. PubMed ID: 3615581 [Abstract] [Full Text] [Related] Page: [Next] [New Search]