These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 37978648

  • 1. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A, Slaoui A, Ahl Laamara R.
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [Abstract] [Full Text] [Related]

  • 2. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS, Mehta V.
    Entropy (Basel); 2021 Sep 01; 23(9):. PubMed ID: 34573774
    [Abstract] [Full Text] [Related]

  • 3. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S, Saha M, Venkatesh BP, Agarwalla BK.
    Phys Rev E; 2023 Jul 01; 108(1-1):014118. PubMed ID: 37583162
    [Abstract] [Full Text] [Related]

  • 4. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S, Agarwalla BK.
    Phys Rev E; 2021 Jun 01; 103(6):L060103. PubMed ID: 34271746
    [Abstract] [Full Text] [Related]

  • 5. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K.
    Phys Rev E; 2022 Jul 01; 106(1-1):014114. PubMed ID: 35974499
    [Abstract] [Full Text] [Related]

  • 6. Algorithmic quantum heat engines.
    Köse E, Çakmak S, Gençten A, Kominis IK, Müstecaplıoğlu ÖE.
    Phys Rev E; 2019 Jul 01; 100(1-1):012109. PubMed ID: 31499932
    [Abstract] [Full Text] [Related]

  • 7. A quantum heat engine driven by atomic collisions.
    Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A.
    Nat Commun; 2021 Apr 06; 12(1):2063. PubMed ID: 33824327
    [Abstract] [Full Text] [Related]

  • 8. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW, Zhang JQ, Ding GY, Li JC, Bu JT, Wang B, Yan LL, Su SL, Chen L, Nori F, Özdemir ŞK, Zhou F, Jing H, Feng M.
    Nat Commun; 2022 Oct 20; 13(1):6225. PubMed ID: 36266331
    [Abstract] [Full Text] [Related]

  • 9. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY, Rahman AU, Yurischev MA, Haddadi S.
    Phys Rev E; 2023 Sep 20; 108(3-1):034106. PubMed ID: 37849157
    [Abstract] [Full Text] [Related]

  • 10. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath.
    Abasabadi SH, Mirafzali SY, Baghshahi HR.
    Sci Rep; 2023 Jun 29; 13(1):10522. PubMed ID: 37386051
    [Abstract] [Full Text] [Related]

  • 11. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach.
    Mohanta S, Agarwalla BK.
    Phys Rev E; 2023 Dec 29; 108(6-1):064127. PubMed ID: 38243491
    [Abstract] [Full Text] [Related]

  • 12. Nonadiabatic coupled-qubit Otto cycle with bidirectional operation and efficiency gains.
    Cherubim C, de Oliveira TR, Jonathan D.
    Phys Rev E; 2022 Apr 29; 105(4-1):044120. PubMed ID: 35590646
    [Abstract] [Full Text] [Related]

  • 13. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S, Ha M, Park JM, Jeong H.
    Phys Rev E; 2020 Feb 29; 101(2-1):022127. PubMed ID: 32168587
    [Abstract] [Full Text] [Related]

  • 14. Optimization of asymmetric quantum Otto engine cycles.
    Shastri R, Venkatesh BP.
    Phys Rev E; 2022 Aug 29; 106(2-1):024123. PubMed ID: 36109960
    [Abstract] [Full Text] [Related]

  • 15. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE.
    Phys Rev E; 2022 Aug 29; 106(2-1):024137. PubMed ID: 36110016
    [Abstract] [Full Text] [Related]

  • 16. Quantum-parametric-oscillator heat engines in squeezed thermal baths: Foundational theoretical issues.
    Arısoy O, Hsiang JT, Hu BL.
    Phys Rev E; 2022 Jan 29; 105(1-1):014108. PubMed ID: 35193212
    [Abstract] [Full Text] [Related]

  • 17. Measurement-based quantum heat engine in a multilevel system.
    Anka MF, de Oliveira TR, Jonathan D.
    Phys Rev E; 2021 Nov 29; 104(5-1):054128. PubMed ID: 34942804
    [Abstract] [Full Text] [Related]

  • 18. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F, Müstecaplıoğlu ÖE.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 29; 92(2):022142. PubMed ID: 26382378
    [Abstract] [Full Text] [Related]

  • 19. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS, Batalhão TB, Herrera M, Souza AM, Sarthour RS, Oliveira IS, Serra RM.
    Phys Rev Lett; 2019 Dec 13; 123(24):240601. PubMed ID: 31922824
    [Abstract] [Full Text] [Related]

  • 20. Measurement-induced operation of two-ion quantum heat machines.
    Chand S, Biswas A.
    Phys Rev E; 2017 Mar 13; 95(3-1):032111. PubMed ID: 28415299
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.