These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 37979190

  • 1. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics.
    Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z.
    ACS Nano; 2023 Dec 12; 17(23):24141-24153. PubMed ID: 37979190
    [Abstract] [Full Text] [Related]

  • 2. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach.
    Liu L, Meng X, Li M, Chu Z, Tong Z.
    ACS Macro Lett; 2024 May 21; 13(5):542-549. PubMed ID: 38629823
    [Abstract] [Full Text] [Related]

  • 3. Uniform "Patchy" Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions.
    Nazemi A, He X, MacFarlane LR, Harniman RL, Hsiao MS, Winnik MA, Faul CF, Manners I.
    J Am Chem Soc; 2017 Mar 29; 139(12):4409-4417. PubMed ID: 28211270
    [Abstract] [Full Text] [Related]

  • 4. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores.
    Tong Z, Xie Y, Arno MC, Zhang Y, Manners I, O'Reilly RK, Dove AP.
    Nat Chem; 2023 Jun 29; 15(6):824-831. PubMed ID: 37081206
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly.
    Oliver AM, Gwyther J, Boott CE, Davis S, Pearce S, Manners I.
    J Am Chem Soc; 2018 Dec 26; 140(51):18104-18114. PubMed ID: 30452254
    [Abstract] [Full Text] [Related]

  • 7. Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via "Living" Crystallization-Driven Self-Assembly of Poly(l-lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption.
    He Y, Eloi JC, Harniman RL, Richardson RM, Whittell GR, Mathers RT, Dove AP, O'Reilly RK, Manners I.
    J Am Chem Soc; 2019 Dec 04; 141(48):19088-19098. PubMed ID: 31657915
    [Abstract] [Full Text] [Related]

  • 8. Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control.
    Qiu H, Gao Y, Du VA, Harniman R, Winnik MA, Manners I.
    J Am Chem Soc; 2015 Feb 18; 137(6):2375-85. PubMed ID: 25585041
    [Abstract] [Full Text] [Related]

  • 9. Extending the Scope of "Living" Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers.
    Finnegan JR, He X, Street STG, Garcia-Hernandez JD, Hayward DW, Harniman RL, Richardson RM, Whittell GR, Manners I.
    J Am Chem Soc; 2018 Dec 12; 140(49):17127-17140. PubMed ID: 30392357
    [Abstract] [Full Text] [Related]

  • 10. Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth.
    Deng R, Mao X, Pearce S, Tian J, Zhang Y, Manners I.
    J Am Chem Soc; 2022 Oct 19; 144(41):19051-19059. PubMed ID: 36201750
    [Abstract] [Full Text] [Related]

  • 11. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.
    Gädt T, Ieong NS, Cambridge G, Winnik MA, Manners I.
    Nat Mater; 2009 Feb 19; 8(2):144-50. PubMed ID: 19136948
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly.
    Ellis CE, Garcia-Hernandez JD, Manners I.
    J Am Chem Soc; 2022 Nov 09; 144(44):20525-20538. PubMed ID: 36306448
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Length control and block-type architectures in worm-like micelles with polyethylene cores.
    Schmelz J, Schedl AE, Steinlein C, Manners I, Schmalz H.
    J Am Chem Soc; 2012 Aug 29; 134(34):14217-25. PubMed ID: 22866904
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Synthesis of Monodisperse Cylindrical Nanoparticles via Crystallization-driven Self-assembly of Biodegradable Block Copolymers.
    Coe Z, Weems A, Dove AP, O'Reilly RK.
    J Vis Exp; 2019 Jun 20; (148):. PubMed ID: 31282881
    [Abstract] [Full Text] [Related]

  • 19. High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core.
    Tian J, Xie SH, Borucu U, Lei S, Zhang Y, Manners I.
    Nat Mater; 2023 Jun 20; 22(6):786-792. PubMed ID: 37217702
    [Abstract] [Full Text] [Related]

  • 20. Competitive Self-Assembly Kinetics as a Route To Control the Morphology of Core-Crystalline Cylindrical Micelles.
    Xu J, Zhou H, Yu Q, Manners I, Winnik MA.
    J Am Chem Soc; 2018 Feb 21; 140(7):2619-2628. PubMed ID: 29400453
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.