These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 37979753
1. Determination of thiram in fruit juices using a bacterial cellulose nanocrystal-based SERS substrate. Xiao L, Hua MZ, Lu X. Int J Biol Macromol; 2024 Jan; 255():128207. PubMed ID: 37979753 [Abstract] [Full Text] [Related]
2. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L, Feng S, Hua MZ, Lu X. Talanta; 2023 Mar 01; 254():124128. PubMed ID: 36462280 [Abstract] [Full Text] [Related]
3. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
4. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Adhikari S, Joshi R, Joshi R, Kim M, Jang Y, Tufa LT, Gicha BB, Lee J, Lee D, Cho BK. Food Chem; 2024 Nov 01; 457():140486. PubMed ID: 39032478 [Abstract] [Full Text] [Related]
5. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L, Yu Z, Lin M. Analyst; 2019 Aug 05; 144(16):4820-4825. PubMed ID: 31282496 [Abstract] [Full Text] [Related]
6. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering. Wu J, Huang Y, Miao J, Lai K. J Sci Food Agric; 2022 Nov 05; 102(14):6211-6219. PubMed ID: 35478166 [Abstract] [Full Text] [Related]
7. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. Cheng Y, Ding Y, Chen J, Xu W, Wang W, Xu S. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov 15; 281():121644. PubMed ID: 35878495 [Abstract] [Full Text] [Related]
8. Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water. Yu H, Guo D, Zhang H, Jia X, Han L, Xiao W. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 15; 285():121930. PubMed ID: 36191437 [Abstract] [Full Text] [Related]
9. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. Alsammarraie FK, Lin M. J Agric Food Chem; 2017 Jan 25; 65(3):666-674. PubMed ID: 28080039 [Abstract] [Full Text] [Related]
10. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements. Lin S, Lin X, Han S, Liu Y, Hasi W, Wang L. Anal Chim Acta; 2020 Apr 29; 1108():167-176. PubMed ID: 32222238 [Abstract] [Full Text] [Related]
11. Preparation of cellulose-based flexible SERS and its application for rapid and ultra-sensitive detection of thiram on fruits and vegetables. Wang H, Chen Y, Yang Y, Xu P, Zhang B, Lu Y, He W, Liu Y, Zhang JH, Xiao X, You R. Int J Biol Macromol; 2024 Mar 29; 262(Pt 1):129941. PubMed ID: 38342254 [Abstract] [Full Text] [Related]
12. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Chen M, Luo W, Liu Q, Hao N, Zhu Y, Liu M, Wang L, Yang H, Chen X. Anal Chem; 2018 Nov 20; 90(22):13647-13654. PubMed ID: 30379069 [Abstract] [Full Text] [Related]
13. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Xiong Z, Lin M, Lin H, Huang M. Carbohydr Polym; 2018 Jun 01; 189():79-86. PubMed ID: 29580429 [Abstract] [Full Text] [Related]
14. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K, Sun DW, Pu H, Wei Q. Food Chem; 2020 Apr 25; 310():125923. PubMed ID: 31837530 [Abstract] [Full Text] [Related]
15. Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates. Dies H, Siampani M, Escobedo C, Docoslis A. Sensors (Basel); 2018 Aug 19; 18(8):. PubMed ID: 30126248 [Abstract] [Full Text] [Related]
16. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S, Raposo M, Nogueira HIS, Trindade T. Talanta; 2018 May 15; 182():558-566. PubMed ID: 29501193 [Abstract] [Full Text] [Related]
17. Stamplike flexible SERS substrate for in-situ rapid detection of thiram residues in fruits and vegetables. Picone AL, Rizzato ML, Lusi AR, Romano RM. Food Chem; 2022 Mar 30; 373(Pt B):131570. PubMed ID: 34810016 [Abstract] [Full Text] [Related]
18. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B, Sun DW, Pu H, Wei Q. Talanta; 2020 Sep 01; 217():120998. PubMed ID: 32498854 [Abstract] [Full Text] [Related]
19. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Chen J, Huang M, Kong L, Lin M. Carbohydr Polym; 2019 Feb 01; 205():596-600. PubMed ID: 30446146 [Abstract] [Full Text] [Related]
20. Bimetallic AuNR@AgNCs for ultrasensitive surface-enhanced Raman scattering sensing of dithianon in apple juice. Zheng K, Shen Y, Chen Z, Zhao L, Li Z, Huang X, Shi J, Zhang Y, Xu X, Zhu Z, Jiang Z, Zhang M, Zou X. Anal Chim Acta; 2024 Mar 01; 1292():342199. PubMed ID: 38309856 [Abstract] [Full Text] [Related] Page: [Next] [New Search]