These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 3799342
1. Theoretical analysis of oxygen supply to contracted skeletal muscle. Groebe K, Thews G. Adv Exp Med Biol; 1986; 200():495-514. PubMed ID: 3799342 [Abstract] [Full Text] [Related]
2. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data. Groebe K. Biophys J; 1995 Apr; 68(4):1246-69. PubMed ID: 7787016 [Abstract] [Full Text] [Related]
3. A versatile model of steady state O2 supply to tissue. Application to skeletal muscle. Groebe K. Biophys J; 1990 Mar; 57(3):485-98. PubMed ID: 2306498 [Abstract] [Full Text] [Related]
4. Effect of red blood cell shape on oxygen transport in capillaries. Wang CH, Popel AS. Math Biosci; 1993 Jul; 116(1):89-110. PubMed ID: 8343620 [Abstract] [Full Text] [Related]
5. Calculated intra- and extracellular PO2 gradients in heavily working red muscle. Groebe K, Thews G. Am J Physiol; 1990 Jul; 259(1 Pt 2):H84-92. PubMed ID: 2375415 [Abstract] [Full Text] [Related]
6. Role of geometry and anisotropic diffusion for modelling PO2 profiles in working red muscle. Groebe K, Thews G. Respir Physiol; 1990 Mar; 79(3):255-78. PubMed ID: 2356363 [Abstract] [Full Text] [Related]
7. Calculated dispersion of capillary transit times: significance for oxygen exchange. Honig CR, Odoroff CL. Am J Physiol; 1981 Feb; 240(2):H199-208. PubMed ID: 7468815 [Abstract] [Full Text] [Related]
8. Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle. Groebe K, Thews G. Adv Exp Med Biol; 1989 Feb; 248():175-85. PubMed ID: 2782144 [Abstract] [Full Text] [Related]
9. A graphical analysis of the influence of red cell transit time, carrier-free layer thickness, and intracellular PO2 on blood-tissue O2 transport. Gayeski TE, Federspiel WJ, Honig CR. Adv Exp Med Biol; 1988 Feb; 222():25-35. PubMed ID: 3364248 [No Abstract] [Full Text] [Related]
10. Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle. Honig CR, Gayeski TE. Adv Exp Med Biol; 1987 Feb; 215():309-21. PubMed ID: 3673731 [Abstract] [Full Text] [Related]
11. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. McGuire BJ, Secomb TW. J Appl Physiol (1985); 2001 Nov; 91(5):2255-65. PubMed ID: 11641369 [Abstract] [Full Text] [Related]
12. Theoretical predictions of end-capillary PO2 in muscles of athletic and nonathletic animals at VO2max. Roy TK, Popel AS. Am J Physiol; 1996 Aug; 271(2 Pt 2):H721-37. PubMed ID: 8770116 [Abstract] [Full Text] [Related]
13. The rate of the deoxygenation reaction limits myoglobin- and hemoglobin-facilitated O₂ diffusion in cells. Endeward V. J Appl Physiol (1985); 2012 May; 112(9):1466-73. PubMed ID: 22362405 [Abstract] [Full Text] [Related]
14. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Honig CR, Gayeski TE, Federspiel W, Clark A, Clark P. Adv Exp Med Biol; 1984 May; 169():23-38. PubMed ID: 6731086 [Abstract] [Full Text] [Related]
19. [A mathematical model of O2 transport by erythrocytes in capillaries]. Kisliakov IuIa. Biofizika; 1996 Mar; 41(3):681-5. PubMed ID: 8924469 [Abstract] [Full Text] [Related]
20. O2 transport in skeletal muscle: development of concepts and current state. Groebe K. Adv Exp Med Biol; 1994 Mar; 345():15-22. PubMed ID: 8079701 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]