These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 38003410
41. Effect of Overexpression of γ-Tocopherol Methyltransferase on α-Tocopherol and Fatty Acid Accumulation and Tolerance to Salt Stress during Seed Germination in Brassica napus L. Guo Y, Li D, Liu T, Liao M, Li Y, Zhang W, Liu Z, Chen M. Int J Mol Sci; 2022 Dec 14; 23(24):. PubMed ID: 36555573 [Abstract] [Full Text] [Related]
42. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG. Microbiol Res; 2017 Jun 14; 199():29-39. PubMed ID: 28454707 [Abstract] [Full Text] [Related]
43. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. BMC Plant Biol; 2019 Jul 04; 19(1):294. PubMed ID: 31272381 [Abstract] [Full Text] [Related]
44. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Wang C, Li Z, Wu W. Food Res Int; 2023 Mar 04; 165():112565. PubMed ID: 36869550 [Abstract] [Full Text] [Related]
45. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.). Wang X, Zhang C, Li L, Fritsche S, Endrigkeit J, Zhang W, Long Y, Jung C, Meng J. PLoS One; 2012 Mar 04; 7(11):e50038. PubMed ID: 23185526 [Abstract] [Full Text] [Related]
46. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica. Guan R, Lager I, Li X, Stymne S, Zhu LH. Plant Biotechnol J; 2014 Feb 04; 12(2):193-203. PubMed ID: 24119222 [Abstract] [Full Text] [Related]
47. Genome-wide characterization of SDR gene family and its potential role in seed dormancy of Brassica napus L. Zhang F, Chen T, Liu N, Hou X, Wang L, Cai Q, Li R, Qian X, Xu H, Zhu Z, Zheng W, Yu Y, Zhou K. BMC Plant Biol; 2024 Jan 02; 24(1):21. PubMed ID: 38166550 [Abstract] [Full Text] [Related]
48. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. Hong B, Zhou B, Peng Z, Yao M, Wu J, Wu X, Guan C, Guan M. Int J Mol Sci; 2023 Mar 23; 24(7):. PubMed ID: 37046988 [Abstract] [Full Text] [Related]
49. Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan. Nishizawa T, Tamaoki M, Aono M, Kubo A, Saji H, Nakajima N. GM Crops; 2010 Mar 23; 1(3):143-56. PubMed ID: 21844669 [Abstract] [Full Text] [Related]
51. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL. J Exp Bot; 2008 Mar 23; 59(13):3543-9. PubMed ID: 18703491 [Abstract] [Full Text] [Related]
52. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W. PLoS One; 2015 Mar 23; 10(4):e0124794. PubMed ID: 25919591 [Abstract] [Full Text] [Related]
53. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). Liu Y, Zhou X, Yan M, Wang P, Wang H, Xin Q, Yang L, Hong D, Yang G. Theor Appl Genet; 2020 Feb 23; 133(2):479-490. PubMed ID: 31832742 [Abstract] [Full Text] [Related]
54. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J. Theor Appl Genet; 2014 Apr 23; 127(4):957-68. PubMed ID: 24504552 [Abstract] [Full Text] [Related]
55. Mechanisms of low nighttime temperature promote oil accumulation in Brassica napus L. based on in-depth transcriptome analysis. Mi C, Zhang Y, Zhao Y, Lin L. Physiol Plant; 2024 Apr 23; 176(3):e14372. PubMed ID: 38812077 [Abstract] [Full Text] [Related]
56. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H, Möhlmann T, Martini N, Neuhaus HE, Geigenberger P. Plant Physiol; 2004 Sep 23; 136(1):2676-86. PubMed ID: 15333758 [Abstract] [Full Text] [Related]
57. [Effects of nitrogen application on yield and nitrogen use efficiency of rapeseed (Brassica napus)]. Zou XY, Liu BL, Song LQ, Guan CY. Ying Yong Sheng Tai Xue Bao; 2016 Apr 22; 27(4):1169-1176. PubMed ID: 29732773 [Abstract] [Full Text] [Related]
58. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C. J Exp Bot; 2012 Jul 22; 63(12):4447-61. PubMed ID: 22563121 [Abstract] [Full Text] [Related]
59. Engineering the Staple Oil Crop Brassica napus Enriched with α-Linolenic Acid Using the Perilla FAD2-FAD3 Fusion Gene. Xue YF, Fu C, Chai CY, Liao FF, Chen BJ, Wei SZ, Wang R, Gao H, Fan TT, Chai YR. J Agric Food Chem; 2023 May 17; 71(19):7324-7333. PubMed ID: 37130169 [Abstract] [Full Text] [Related]
60. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F, He J, Shi J, Zheng T, Xu F, Wu G, Liu R, Liu S. G3 (Bethesda); 2016 Apr 07; 6(4):1073-81. PubMed ID: 26896439 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]